-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathintents.py
195 lines (151 loc) · 6.6 KB
/
intents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from abc import ABCMeta, abstractmethod
import random
import json
import pickle
import numpy as np
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import nltk
from nltk.stem import WordNetLemmatizer
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.optimizers.legacy import SGD ####### change
from tensorflow.keras.models import load_model
import pandas as pd ######### change
nltk.download('punkt', quiet=True)
nltk.download('wordnet', quiet=True)
class IAssistant(metaclass=ABCMeta):
@abstractmethod
def train_model(self):
""" Implemented in child class """
@abstractmethod
def request_tag(self, message):
""" Implemented in child class """
@abstractmethod
def get_tag_by_id(self, id):
""" Implemented in child class """
@abstractmethod
def request_method(self, message):
""" Implemented in child class """
@abstractmethod
def request(self, message):
""" Implemented in child class """
class GenericAssistant(IAssistant):
def __init__(self, intents, intent_methods={}, model_name="assistant_model"):
self.intents = intents
self.intent_methods = intent_methods
self.model_name = model_name
if intents.endswith(".json"):
self.load_json_intents(intents)
self.lemmatizer = WordNetLemmatizer()
def load_json_intents(self, intents):
self.intents = json.loads(open(intents).read())
def train_model(self):
self.words = []
self.classes = []
documents = []
ignore_letters = ['!', '?', ',', '.']
for intent in self.intents['intents']:
for pattern in intent['patterns']:
word = nltk.word_tokenize(pattern)
self.words.extend(word)
documents.append((word, intent['tag']))
if intent['tag'] not in self.classes:
self.classes.append(intent['tag'])
self.words = [self.lemmatizer.lemmatize(w.lower()) for w in self.words if w not in ignore_letters]
self.words = sorted(list(set(self.words)))
self.classes = sorted(list(set(self.classes)))
training = []
output_empty = [0] * len(self.classes)
for doc in documents:
bag = []
word_patterns = doc[0]
word_patterns = [self.lemmatizer.lemmatize(word.lower()) for word in word_patterns]
for word in self.words:
bag.append(1) if word in word_patterns else bag.append(0)
output_row = list(output_empty)
output_row[self.classes.index(doc[1])] = 1
training.append([bag, output_row])
random.shuffle(training)
# training = np.array(training) ######### change
df = pd.DataFrame(training, columns=['patterns', 'intents'])
training = df.to_numpy()
train_x = list(training[:, 0])
train_y = list(training[:, 1])
self.model = Sequential()
self.model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu'))
self.model.add(Dropout(0.5))
self.model.add(Dense(64, activation='relu'))
self.model.add(Dropout(0.5))
self.model.add(Dense(len(train_y[0]), activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
self.model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
self.hist = self.model.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=5, verbose=1)
def save_model(self, model_name=None):
if model_name is None:
self.model.save(f"{self.model_name}.h5", self.hist)
pickle.dump(self.words, open(f'{self.model_name}_words.pkl', 'wb'))
pickle.dump(self.classes, open(f'{self.model_name}_classes.pkl', 'wb'))
else:
self.model.save(f"{model_name}.h5", self.hist)
pickle.dump(self.words, open(f'{model_name}_words.pkl', 'wb'))
pickle.dump(self.classes, open(f'{model_name}_classes.pkl', 'wb'))
def load_model(self, model_name=None):
if model_name is None:
self.words = pickle.load(open(f'{self.model_name}_words.pkl', 'rb'))
self.classes = pickle.load(open(f'{self.model_name}_classes.pkl', 'rb'))
self.model = load_model(f'{self.model_name}.h5')
else:
self.words = pickle.load(open(f'{model_name}_words.pkl', 'rb'))
self.classes = pickle.load(open(f'{model_name}_classes.pkl', 'rb'))
self.model = load_model(f'{model_name}.h5')
def _clean_up_sentence(self, sentence):
sentence_words = nltk.word_tokenize(sentence)
sentence_words = [self.lemmatizer.lemmatize(word.lower()) for word in sentence_words]
return sentence_words
def _bag_of_words(self, sentence, words):
sentence_words = self._clean_up_sentence(sentence)
bag = [0] * len(words)
for s in sentence_words:
for i, word in enumerate(words):
if word == s:
bag[i] = 1
return np.array(bag)
def _predict_class(self, sentence):
p = self._bag_of_words(sentence, self.words)
res = self.model.predict(np.array([p]))[0]
# print('**********probabilities(-1):', res)
ERROR_THRESHOLD = 0.1
results = [[i, r] for i, r in enumerate(res) if r > ERROR_THRESHOLD]
# print('**********probabilities(0):', results)
results.sort(key=lambda x: x[1], reverse=True)
# print('**********probabilities(1):', results)
return_list = []
for r in results:
return_list.append({'intent': self.classes[r[0]], 'probability': str(r[1])})
return return_list
def _get_response(self, ints, intents_json):
try:
tag = ints[0]['intent']
list_of_intents = intents_json['intents']
for i in list_of_intents:
if i['tag'] == tag:
result = random.choice(i['responses'])
break
except IndexError:
result = "I don't understand!"
return result
def request_tag(self, message):
pass
def get_tag_by_id(self, id):
pass
def request_method(self, message):
pass
def request(self, message):
ints = self._predict_class(message)
# print('********probabilities:', ints)
if ints[0]['intent'] in self.intent_methods.keys():
self.intent_methods[ints[0]['intent']]()
return
else:
return self._get_response(ints, self.intents)