-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference_diffusion_cond.py
315 lines (279 loc) · 11.7 KB
/
inference_diffusion_cond.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import logging
from pathlib import Path
import time
from datetime import timedelta
import warnings
import numpy as np
warnings.simplefilter('ignore', UserWarning)
import os
import sys
import torch
import torch.nn.functional as F
from generative.inferers import LatentDiffusionInferer
from generative.networks.schedulers import DDPMScheduler, DDIMScheduler
from monai.config import print_config
from monai.utils import first, set_determinism
from torch.cuda.amp import GradScaler, autocast
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from utils import define_instance, prepare_json_dataloader, setup_ddp, SpatialRescaler
from train_autoencoder import define_autoencoder
from visualize_image import visualize_one_slice_in_3d_image, visualize_one_slice_in_3d_label
from tqdm import tqdm
from monai.transforms import SaveImage
from PIL import Image
from monai.utils import set_determinism
from monai.transforms import (
Compose,
EnsureChannelFirstd,
EnsureTyped,
LoadImaged,
Orientationd,
ScaleIntensityRanged,
)
from monai.data import DataLoader, CacheDataset, create_test_image_3d, partition_dataset
def main():
parser = argparse.ArgumentParser(description="PyTorch VAE-GAN training")
parser.add_argument(
"-e",
"--environment-file",
default="./config/environment_local.json",
help="environment json file that stores environment path",
)
parser.add_argument(
"-c",
"--config-file",
default="./config/config_train_32g_local.json",
help="config json file that stores hyper-parameters",
)
parser.add_argument(
"--download_data",
default=False,
action="store_true",
help="whether to download Brats data before training",
)
parser.add_argument(
"--amp",
default=True,
action="store_true",
help="whether to use AMP",
)
parser.add_argument(
"-a",
"--ae_ckpt",
default="autoencoder.pt",
help="checkpoint name",
)
parser.add_argument(
"-u",
"--unet_ckpt",
default="diffusion_unet_cond_last.pt",
help="checkpoint name",
)
parser.add_argument(
"-s",
"--scale_factor",
type=float,
default=None,
help="the scale of the latent space",
)
parser.add_argument(
"--case_name",
type=str,
default=None,
help="infer a single case",
)
parser.add_argument(
"--prefix",
type=str,
default="_no_kidney",
help="prefix for inference case",
)
parser.add_argument("-g", "--gpus", default=1, type=int, help="number of gpus per node")
args = parser.parse_args()
set_determinism(43)
# Step 0: configuration
ddp_bool = args.gpus > 1 # whether to use distributed data parallel
if ddp_bool:
rank = int(os.environ["LOCAL_RANK"])
world_size = int(os.environ["WORLD_SIZE"])
dist, device = setup_ddp(rank, world_size)
else:
rank = 0
world_size = 1
device = 0
torch.cuda.set_device(device)
print(f"Using {device}")
print_config()
torch.backends.cudnn.benchmark = True
# torch.set_num_threads(4)
torch.autograd.set_detect_anomaly(True)
env_dict = json.load(open(args.environment_file, "r"))
config_dict = json.load(open(args.config_file, "r"))
for k, v in env_dict.items():
setattr(args, k, v)
for k, v in config_dict.items():
setattr(args, k, v)
prefix = ""
# Step 1: set data loader
if args.case_name is None:
_, val_loader = prepare_json_dataloader(
args,
1, # make batch_size=1
rank=rank,
world_size=world_size,
cache=1.0,
download=args.download_data,
is_inference=True
)
else:
prefix = args.prefix
files = []
str_img = os.path.join(args.data_base_dir, "images", args.case_name + ".nii.gz")
str_seg = os.path.join(args.data_base_dir, args.case_name + "_label" + prefix + ".nii.gz")
files.append({"image": str_img, "label": str_seg})
common_transform = [
LoadImaged(keys=["image", "label"]),
EnsureChannelFirstd(keys=["image", "label"]),
Orientationd(keys=["image", "label"], axcodes="RAS"),
ScaleIntensityRanged(keys=["image"], a_min=-200, a_max=200, b_min=-1, b_max=1, clip=True),
EnsureTyped(keys="image", dtype=torch.float32),
]
val_transforms = Compose(
common_transform
)
val_ds = CacheDataset(
data=files, transform=val_transforms, cache_rate=1.0, num_workers=1,
)
val_loader = DataLoader(
val_ds, batch_size=1, shuffle=False, num_workers=1, pin_memory=False
)
data = next(iter(val_loader))
print("Batch shape:", data["image"].shape)
# Define AE
autoencoder = define_autoencoder(args).to(device)
# Set up spatial scaler
label_spatial_scaler = SpatialRescaler(n_stages=len(args.autoencoder_def["num_channels"]) - 1, method='nearest')
num_params = 0
for param in autoencoder.parameters():
num_params += param.numel()
print('[Autoencoder] Total number of parameters : %.3f M' % (num_params / 1e6))
args.model_dir = os.path.join(args.model_dir, args.exp_name)
trained_ae_path = os.path.join(args.model_dir, args.ae_ckpt)
map_location = {"cuda:%d" % 0: "cuda:%d" % rank}
autoencoder.load_state_dict(torch.load(trained_ae_path, map_location=map_location))
print(f"Rank {rank}: Load trained autoencoder from {trained_ae_path}")
with torch.no_grad():
with autocast(enabled=True):
check_data = first(val_loader)
z = autoencoder.encode_stage_2_inputs(check_data["image"][0:1, ...].to(device))
print(f"Latent feature shape {z.shape}")
scale_factor = 1. / z.flatten().std()
colorize = torch.cat([
torch.ones(3, 1, 1, 1) * -1,
torch.randn(3, 4, 1, 1)],
1).to(device)
if ddp_bool:
dist.barrier()
dist.all_reduce(scale_factor, op=torch.distributed.ReduceOp.AVG)
dist.all_reduce(colorize, op=torch.distributed.ReduceOp.AVG)
if args.scale_factor is not None:
scale_factor = args.scale_factor
print(f"Rank {rank}: scale_factor -> {scale_factor}")
# Define Unet
unet = define_instance(args, "diffusion_def").to(device)
trained_unet_path = os.path.join(args.model_dir, args.unet_ckpt)
map_location = {"cuda:%d" % 0: "cuda:%d" % rank}
unet.load_state_dict(torch.load(trained_unet_path, map_location=map_location))
print(f"Rank {rank}: Load trained Unet from {trained_unet_path}")
# We also define ddim inferer for fast eval
scheduler_ddim = DDIMScheduler(
num_train_timesteps=args.NoiseScheduler["num_train_timesteps"],
schedule="scaled_linear_beta",
beta_start=args.NoiseScheduler["beta_start"],
beta_end=args.NoiseScheduler["beta_end"],
clip_sample=False
)
scheduler_ddim.set_timesteps(num_inference_steps=1000)
autoencoder.eval()
unet.eval()
for step, batch in enumerate(val_loader):
labels_ = batch["label"].to(device) # choose only one of Brats channels
images = batch["image"].to(device)
with torch.no_grad():
with autocast(enabled=args.amp):
noise_shape = [1] + list(z.shape[1:])
noise = torch.randn(noise_shape, dtype=labels_.dtype).to(device)
brain_fg = (images[:, 0:1, ...] > -1).float()
labels = labels_ + brain_fg
# scale the label to latent shape
downsampled_seg_label = label_spatial_scaler(labels)
# normalize it to [-1, 1]
downsampled_seg_label = (downsampled_seg_label / 4.) * 2. - 1.
latents = noise
for t in tqdm(scheduler_ddim.timesteps, ncols=110):
latent_model_input = torch.cat(
[latents, downsampled_seg_label], dim=1)
noise_pred = unet(
x=latent_model_input, timesteps=torch.Tensor((t,)).to(device)
)
latents, _ = scheduler_ddim.step(noise_pred, t, latents)
synthetic_images = autoencoder.decode_stage_2_outputs(latents / scale_factor)
synthetic_images = torch.clip(synthetic_images, -1., 1.)
SaveImage(output_dir=args.model_dir, output_postfix="image", resample=False, separate_folder=False)(
(synthetic_images[0]+ 1.0) / 2.0, meta_data={
'filename_or_obj': batch["image_meta_dict"]['filename_or_obj'][0].replace(".nii.gz", "")})
SaveImage(output_dir=args.model_dir, output_postfix="seg", resample=False, separate_folder=False)(
labels_[0], meta_data={
'filename_or_obj': batch["image_meta_dict"]['filename_or_obj'][0].replace(".nii.gz", "")})
# synimg_list = []
# seg_list = []
# real_list = []
# for axis in range(3):
# synimg = visualize_one_slice_in_3d_image(torch.flip(synthetic_images[0, 0, ...], [-3, -2, -1]),
# axis).transpose(
# [2, 1, 0]
# )
# synimg_list.append(synimg)
# seg = visualize_one_slice_in_3d_label(colorize,
# torch.flip(labels[0:1, ...].to(device),
# [-3, -2, -1]), axis).transpose(
# [2, 1, 0]
# )
# seg_list.append(seg)
# real = visualize_one_slice_in_3d_image(torch.flip(images[0, 0, ...], [-3, -2, -1]),
# axis).transpose([2, 1, 0])
# real_list.append(real)
#
# file_name = batch["image_meta_dict"]['filename_or_obj'][0].split("/")[-1].split(".")[0]
# seg_save = np.concatenate(seg_list,axis=2).transpose([1, 2, 0])
# seg_save = Image.fromarray(seg_save)
# seg_save.save(os.path.join(args.model_dir,file_name + prefix + "_seg.png"))
#
# synimg_save = np.concatenate(synimg_list, axis=2).transpose([1, 2, 0])
# synimg_save = Image.fromarray(synimg_save)
# synimg_save.save(os.path.join(args.model_dir, file_name + prefix + "_syn.png"))
#
# real_save = np.concatenate(real_list, axis=2).transpose([1, 2, 0])
# real_save = Image.fromarray(real_save)
# real_save.save(os.path.join(args.model_dir, file_name + prefix + "_real.png"))
if __name__ == "__main__":
logging.basicConfig(
stream=sys.stdout,
level=logging.INFO,
format="[%(asctime)s.%(msecs)03d][%(levelname)5s](%(name)s) - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
main()