-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer_models.py
executable file
·157 lines (133 loc) · 5.64 KB
/
infer_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/usr/bin/env python
""" infer_models for kitti and tum dataset
"""
import os, sys
from TrianFlow.core.visualize.visualizer import *
from TrianFlow.core.visualize.profiler import Profiler
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import pdb
from sklearn import linear_model
import yaml
import warnings
import code
from tqdm import tqdm
import copy
from pathlib import Path
import time
from collections import OrderedDict
from utils.utils import get_configs, vehicle_to_world
from infer_vo import infer_vo
warnings.filterwarnings("ignore")
class infer_vo_kitti(infer_vo):
def __init__(self, seq_id, sequences_root_dir, if_pnp=True, if_deepF=False):
super().__init__(seq_id, sequences_root_dir, if_pnp, if_deepF)
self.raw_img_h = 370.0#320
self.raw_img_w = 1226.0#1024
self.new_img_h = 256#320
self.new_img_w = 832#1024
self.cam_intrinsics = self.read_rescale_camera_intrinsics(os.path.join(self.img_dir, seq_id) + '/calib.txt')
class infer_vo_tum(infer_vo):
def __init__(self, seq_id, sequences_root_dir, if_pnp=True, if_deepF=False):
super().__init__(seq_id, sequences_root_dir, if_pnp, if_deepF)
self.img_dir = sequences_root_dir
#self.img_dir = '/home4/zhaow/data/kitti_odometry/sampled_s4_sequences/'
#self.seq_id = seq_id
self.raw_img_h = 480.0 #320
self.raw_img_w = 640.0 #1024
self.new_img_h = 384 #320
self.new_img_w = 512 #1024
#self.max_depth = 50.0
#self.min_depth = 0.0
self.cam_intrinsics = self.rescale_camera_intrinsics(self.read_calib_file())
self.train_sets = [ # only process train_set
"rgbd_dataset_freiburg3_long_office_household",
"rgbd_dataset_freiburg3_long_office_household_validation",
"rgbd_dataset_freiburg3_sitting_xyz",
"rgbd_dataset_freiburg3_structure_texture_far",
"rgbd_dataset_freiburg3_structure_texture_near",
"rgbd_dataset_freiburg3_teddy",
]
self.test_sets = [
"rgbd_dataset_freiburg3_walking_xyz",
"rgbd_dataset_freiburg3_large_cabinet_validation",
]
def read_calib_file(self):
""" # directly from the website
https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats#intrinsic_camera_calibration_of_the_kinect
"""
calib = np.identity(3)
fu, fv, cu, cv = 535.4, 539.2, 320.1, 247.6
calib = np.array([[fu, 0, cu], [0, fv, cv], [0, 0, 1]])
# D = np.array([0,0,0,0,0])
# height, width, calib, D = self.load_intrinsics(calib_data)
# calib = proj_c2p[0:3, 0:3]
# intrinsics_original = calib + 0
# calib[0,:] *= zoom_x
# calib[1,:] *= zoom_y
# print(f"calib: {calib}, intrinsics_original: {intrinsics_original}")
return calib
# @staticmethod
def read_images_files_from_folder(self, path_to_sequence):
rgb_filenames = []
timestamps = []
# path_to_sequence = f"{dataset_dir}/{sequence}"
with open(f"{path_to_sequence}/rgb.txt") as times_file:
for line in times_file:
if len(line) > 0 and not line.startswith('#'):
t, rgb = line.rstrip().split(' ')[0:2]
rgb_filenames.append(f"{path_to_sequence}/{rgb}")
timestamps.append(float(t))
test_files = rgb_filenames
timestamps = np.array(timestamps)
return test_files, timestamps
def load_images(self, max_length=-1):
print(f'Loading images from sequence {self.seq_id}')
path = self.img_dir
seq = self.seq_id
new_img_h = self.new_img_h
new_img_w = self.new_img_w
test_files, timestamps = self.read_images_files_from_folder(f"{path}/{seq}")
self.timestamps = timestamps
# seq_dir = os.path.join(path, seq)
# image_dir = os.path.join(seq_dir, 'image_2')
num = len(test_files)
if max_length > 0:
num = min(int(max_length)+1, num)
images = []
for i in tqdm(range(num)):
image = cv2.imread(test_files[i])
image = cv2.resize(image, (new_img_w, new_img_h))
images.append(image)
print('Loaded Images')
return images
@staticmethod
def mat2quat(mat):
assert mat.shape == (3,4) or mat.shape == (4,4)
rotation = mat[:3,:3]
trans = mat[:3,3]
from scipy.spatial.transform import Rotation as R
qua = R.from_matrix(rotation)
vect = np.concatenate((trans, qua.as_quat() ), axis=0)
return vect
def save_traj(self, traj_save_dir, poses, save_time, model):
if self.timestamps is not None:
time_stamps = self.timestamps
time_stamps = np.array(time_stamps).flatten()
time_stamps = time_stamps[:len(poses)].reshape(-1,1)
poses_wTime = np.concatenate((time_stamps, poses), axis=1)
else:
poses_wTime = poses
traj_dir = self.save_traj_kitti(traj_save_dir, poses, save_time, model)
## save tum txt
filename = Path(f"{traj_dir}/preds_{save_time}.tum")
pose_qua = np.array([infer_vo_tum.mat2quat(m.reshape(3,4)) for m in poses])
poses_qua_wTime = np.concatenate((time_stamps, pose_qua), axis=1)
np.savetxt(filename, poses_qua_wTime, delimiter=" ", fmt="%.4f")
# copy tum txt
filename = Path(f"{traj_dir}/preds.tum")
np.savetxt(filename, poses_qua_wTime, delimiter=" ", fmt="%.4f")
print(f'Predicted (TUM) Trajectory saved at : {filename}')
pass