diff --git a/CMakeLists.txt b/CMakeLists.txt
index 48e300e..98a4009 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -2,14 +2,24 @@ cmake_minimum_required (VERSION 3.1)
project(color)
-# Compiler-specific C++11 activation.
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
+set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_SOURCE_DIR}/cmake/Modules/")
+
+find_package(PythonLibs REQUIRED 3)
+find_package(PythonInterp REQUIRED 3)
+find_package(NumPy REQUIRED)
-find_library(PythonLibs 3)
-
-add_library(color SHARED src/debug.cpp src/conversion.cpp src/CIEDE2000.cpp)
-target_include_directories(color PUBLIC include PRIVATE ${PYTHON_INCLUDE_DIR})
+add_library(color SHARED src/debug.cpp src/conversion.cpp src/CIEDE2000.cpp src/fitness.cpp)
+target_include_directories(color PUBLIC include PRIVATE ${PYTHON_INCLUDE_DIR} ${NUMPY_INCLUDE_DIR})
add_executable(testCIEDE2000 test/testCIEDE2000.cpp)
target_link_libraries(testCIEDE2000 color)
+
+add_executable(evo1 test/example1.cpp)
+target_link_libraries(evo1 color)
+add_executable(evo2 test/example2.cpp)
+target_link_libraries(evo2 color)
+
+add_executable(testlexi test/testlexi.cpp)
+target_link_libraries(testlexi color)
\ No newline at end of file
diff --git a/COPYING b/COPYING
new file mode 100644
index 0000000..94a9ed0
--- /dev/null
+++ b/COPYING
@@ -0,0 +1,674 @@
+ GNU GENERAL PUBLIC LICENSE
+ Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+ Preamble
+
+ The GNU General Public License is a free, copyleft license for
+software and other kinds of works.
+
+ The licenses for most software and other practical works are designed
+to take away your freedom to share and change the works. By contrast,
+the GNU General Public License is intended to guarantee your freedom to
+share and change all versions of a program--to make sure it remains free
+software for all its users. We, the Free Software Foundation, use the
+GNU General Public License for most of our software; it applies also to
+any other work released this way by its authors. You can apply it to
+your programs, too.
+
+ When we speak of free software, we are referring to freedom, not
+price. Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+them if you wish), that you receive source code or can get it if you
+want it, that you can change the software or use pieces of it in new
+free programs, and that you know you can do these things.
+
+ To protect your rights, we need to prevent others from denying you
+these rights or asking you to surrender the rights. Therefore, you have
+certain responsibilities if you distribute copies of the software, or if
+you modify it: responsibilities to respect the freedom of others.
+
+ For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must pass on to the recipients the same
+freedoms that you received. You must make sure that they, too, receive
+or can get the source code. And you must show them these terms so they
+know their rights.
+
+ Developers that use the GNU GPL protect your rights with two steps:
+(1) assert copyright on the software, and (2) offer you this License
+giving you legal permission to copy, distribute and/or modify it.
+
+ For the developers' and authors' protection, the GPL clearly explains
+that there is no warranty for this free software. For both users' and
+authors' sake, the GPL requires that modified versions be marked as
+changed, so that their problems will not be attributed erroneously to
+authors of previous versions.
+
+ Some devices are designed to deny users access to install or run
+modified versions of the software inside them, although the manufacturer
+can do so. This is fundamentally incompatible with the aim of
+protecting users' freedom to change the software. The systematic
+pattern of such abuse occurs in the area of products for individuals to
+use, which is precisely where it is most unacceptable. Therefore, we
+have designed this version of the GPL to prohibit the practice for those
+products. If such problems arise substantially in other domains, we
+stand ready to extend this provision to those domains in future versions
+of the GPL, as needed to protect the freedom of users.
+
+ Finally, every program is threatened constantly by software patents.
+States should not allow patents to restrict development and use of
+software on general-purpose computers, but in those that do, we wish to
+avoid the special danger that patents applied to a free program could
+make it effectively proprietary. To prevent this, the GPL assures that
+patents cannot be used to render the program non-free.
+
+ The precise terms and conditions for copying, distribution and
+modification follow.
+
+ TERMS AND CONDITIONS
+
+ 0. Definitions.
+
+ "This License" refers to version 3 of the GNU General Public License.
+
+ "Copyright" also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+ "The Program" refers to any copyrightable work licensed under this
+License. Each licensee is addressed as "you". "Licensees" and
+"recipients" may be individuals or organizations.
+
+ To "modify" a work means to copy from or adapt all or part of the work
+in a fashion requiring copyright permission, other than the making of an
+exact copy. The resulting work is called a "modified version" of the
+earlier work or a work "based on" the earlier work.
+
+ A "covered work" means either the unmodified Program or a work based
+on the Program.
+
+ To "propagate" a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for
+infringement under applicable copyright law, except executing it on a
+computer or modifying a private copy. Propagation includes copying,
+distribution (with or without modification), making available to the
+public, and in some countries other activities as well.
+
+ To "convey" a work means any kind of propagation that enables other
+parties to make or receive copies. Mere interaction with a user through
+a computer network, with no transfer of a copy, is not conveying.
+
+ An interactive user interface displays "Appropriate Legal Notices"
+to the extent that it includes a convenient and prominently visible
+feature that (1) displays an appropriate copyright notice, and (2)
+tells the user that there is no warranty for the work (except to the
+extent that warranties are provided), that licensees may convey the
+work under this License, and how to view a copy of this License. If
+the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+ 1. Source Code.
+
+ The "source code" for a work means the preferred form of the work
+for making modifications to it. "Object code" means any non-source
+form of a work.
+
+ A "Standard Interface" means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of
+interfaces specified for a particular programming language, one that
+is widely used among developers working in that language.
+
+ The "System Libraries" of an executable work include anything, other
+than the work as a whole, that (a) is included in the normal form of
+packaging a Major Component, but which is not part of that Major
+Component, and (b) serves only to enable use of the work with that
+Major Component, or to implement a Standard Interface for which an
+implementation is available to the public in source code form. A
+"Major Component", in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system
+(if any) on which the executable work runs, or a compiler used to
+produce the work, or an object code interpreter used to run it.
+
+ The "Corresponding Source" for a work in object code form means all
+the source code needed to generate, install, and (for an executable
+work) run the object code and to modify the work, including scripts to
+control those activities. However, it does not include the work's
+System Libraries, or general-purpose tools or generally available free
+programs which are used unmodified in performing those activities but
+which are not part of the work. For example, Corresponding Source
+includes interface definition files associated with source files for
+the work, and the source code for shared libraries and dynamically
+linked subprograms that the work is specifically designed to require,
+such as by intimate data communication or control flow between those
+subprograms and other parts of the work.
+
+ The Corresponding Source need not include anything that users
+can regenerate automatically from other parts of the Corresponding
+Source.
+
+ The Corresponding Source for a work in source code form is that
+same work.
+
+ 2. Basic Permissions.
+
+ All rights granted under this License are granted for the term of
+copyright on the Program, and are irrevocable provided the stated
+conditions are met. This License explicitly affirms your unlimited
+permission to run the unmodified Program. The output from running a
+covered work is covered by this License only if the output, given its
+content, constitutes a covered work. This License acknowledges your
+rights of fair use or other equivalent, as provided by copyright law.
+
+ You may make, run and propagate covered works that you do not
+convey, without conditions so long as your license otherwise remains
+in force. You may convey covered works to others for the sole purpose
+of having them make modifications exclusively for you, or provide you
+with facilities for running those works, provided that you comply with
+the terms of this License in conveying all material for which you do
+not control copyright. Those thus making or running the covered works
+for you must do so exclusively on your behalf, under your direction
+and control, on terms that prohibit them from making any copies of
+your copyrighted material outside their relationship with you.
+
+ Conveying under any other circumstances is permitted solely under
+the conditions stated below. Sublicensing is not allowed; section 10
+makes it unnecessary.
+
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
+
+ No covered work shall be deemed part of an effective technological
+measure under any applicable law fulfilling obligations under article
+11 of the WIPO copyright treaty adopted on 20 December 1996, or
+similar laws prohibiting or restricting circumvention of such
+measures.
+
+ When you convey a covered work, you waive any legal power to forbid
+circumvention of technological measures to the extent such circumvention
+is effected by exercising rights under this License with respect to
+the covered work, and you disclaim any intention to limit operation or
+modification of the work as a means of enforcing, against the work's
+users, your or third parties' legal rights to forbid circumvention of
+technological measures.
+
+ 4. Conveying Verbatim Copies.
+
+ You may convey verbatim copies of the Program's source code as you
+receive it, in any medium, provided that you conspicuously and
+appropriately publish on each copy an appropriate copyright notice;
+keep intact all notices stating that this License and any
+non-permissive terms added in accord with section 7 apply to the code;
+keep intact all notices of the absence of any warranty; and give all
+recipients a copy of this License along with the Program.
+
+ You may charge any price or no price for each copy that you convey,
+and you may offer support or warranty protection for a fee.
+
+ 5. Conveying Modified Source Versions.
+
+ You may convey a work based on the Program, or the modifications to
+produce it from the Program, in the form of source code under the
+terms of section 4, provided that you also meet all of these conditions:
+
+ a) The work must carry prominent notices stating that you modified
+ it, and giving a relevant date.
+
+ b) The work must carry prominent notices stating that it is
+ released under this License and any conditions added under section
+ 7. This requirement modifies the requirement in section 4 to
+ "keep intact all notices".
+
+ c) You must license the entire work, as a whole, under this
+ License to anyone who comes into possession of a copy. This
+ License will therefore apply, along with any applicable section 7
+ additional terms, to the whole of the work, and all its parts,
+ regardless of how they are packaged. This License gives no
+ permission to license the work in any other way, but it does not
+ invalidate such permission if you have separately received it.
+
+ d) If the work has interactive user interfaces, each must display
+ Appropriate Legal Notices; however, if the Program has interactive
+ interfaces that do not display Appropriate Legal Notices, your
+ work need not make them do so.
+
+ A compilation of a covered work with other separate and independent
+works, which are not by their nature extensions of the covered work,
+and which are not combined with it such as to form a larger program,
+in or on a volume of a storage or distribution medium, is called an
+"aggregate" if the compilation and its resulting copyright are not
+used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit. Inclusion of a covered work
+in an aggregate does not cause this License to apply to the other
+parts of the aggregate.
+
+ 6. Conveying Non-Source Forms.
+
+ You may convey a covered work in object code form under the terms
+of sections 4 and 5, provided that you also convey the
+machine-readable Corresponding Source under the terms of this License,
+in one of these ways:
+
+ a) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by the
+ Corresponding Source fixed on a durable physical medium
+ customarily used for software interchange.
+
+ b) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by a
+ written offer, valid for at least three years and valid for as
+ long as you offer spare parts or customer support for that product
+ model, to give anyone who possesses the object code either (1) a
+ copy of the Corresponding Source for all the software in the
+ product that is covered by this License, on a durable physical
+ medium customarily used for software interchange, for a price no
+ more than your reasonable cost of physically performing this
+ conveying of source, or (2) access to copy the
+ Corresponding Source from a network server at no charge.
+
+ c) Convey individual copies of the object code with a copy of the
+ written offer to provide the Corresponding Source. This
+ alternative is allowed only occasionally and noncommercially, and
+ only if you received the object code with such an offer, in accord
+ with subsection 6b.
+
+ d) Convey the object code by offering access from a designated
+ place (gratis or for a charge), and offer equivalent access to the
+ Corresponding Source in the same way through the same place at no
+ further charge. You need not require recipients to copy the
+ Corresponding Source along with the object code. If the place to
+ copy the object code is a network server, the Corresponding Source
+ may be on a different server (operated by you or a third party)
+ that supports equivalent copying facilities, provided you maintain
+ clear directions next to the object code saying where to find the
+ Corresponding Source. Regardless of what server hosts the
+ Corresponding Source, you remain obligated to ensure that it is
+ available for as long as needed to satisfy these requirements.
+
+ e) Convey the object code using peer-to-peer transmission, provided
+ you inform other peers where the object code and Corresponding
+ Source of the work are being offered to the general public at no
+ charge under subsection 6d.
+
+ A separable portion of the object code, whose source code is excluded
+from the Corresponding Source as a System Library, need not be
+included in conveying the object code work.
+
+ A "User Product" is either (1) a "consumer product", which means any
+tangible personal property which is normally used for personal, family,
+or household purposes, or (2) anything designed or sold for incorporation
+into a dwelling. In determining whether a product is a consumer product,
+doubtful cases shall be resolved in favor of coverage. For a particular
+product received by a particular user, "normally used" refers to a
+typical or common use of that class of product, regardless of the status
+of the particular user or of the way in which the particular user
+actually uses, or expects or is expected to use, the product. A product
+is a consumer product regardless of whether the product has substantial
+commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+ "Installation Information" for a User Product means any methods,
+procedures, authorization keys, or other information required to install
+and execute modified versions of a covered work in that User Product from
+a modified version of its Corresponding Source. The information must
+suffice to ensure that the continued functioning of the modified object
+code is in no case prevented or interfered with solely because
+modification has been made.
+
+ If you convey an object code work under this section in, or with, or
+specifically for use in, a User Product, and the conveying occurs as
+part of a transaction in which the right of possession and use of the
+User Product is transferred to the recipient in perpetuity or for a
+fixed term (regardless of how the transaction is characterized), the
+Corresponding Source conveyed under this section must be accompanied
+by the Installation Information. But this requirement does not apply
+if neither you nor any third party retains the ability to install
+modified object code on the User Product (for example, the work has
+been installed in ROM).
+
+ The requirement to provide Installation Information does not include a
+requirement to continue to provide support service, warranty, or updates
+for a work that has been modified or installed by the recipient, or for
+the User Product in which it has been modified or installed. Access to a
+network may be denied when the modification itself materially and
+adversely affects the operation of the network or violates the rules and
+protocols for communication across the network.
+
+ Corresponding Source conveyed, and Installation Information provided,
+in accord with this section must be in a format that is publicly
+documented (and with an implementation available to the public in
+source code form), and must require no special password or key for
+unpacking, reading or copying.
+
+ 7. Additional Terms.
+
+ "Additional permissions" are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions.
+Additional permissions that are applicable to the entire Program shall
+be treated as though they were included in this License, to the extent
+that they are valid under applicable law. If additional permissions
+apply only to part of the Program, that part may be used separately
+under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+ When you convey a copy of a covered work, you may at your option
+remove any additional permissions from that copy, or from any part of
+it. (Additional permissions may be written to require their own
+removal in certain cases when you modify the work.) You may place
+additional permissions on material, added by you to a covered work,
+for which you have or can give appropriate copyright permission.
+
+ Notwithstanding any other provision of this License, for material you
+add to a covered work, you may (if authorized by the copyright holders of
+that material) supplement the terms of this License with terms:
+
+ a) Disclaiming warranty or limiting liability differently from the
+ terms of sections 15 and 16 of this License; or
+
+ b) Requiring preservation of specified reasonable legal notices or
+ author attributions in that material or in the Appropriate Legal
+ Notices displayed by works containing it; or
+
+ c) Prohibiting misrepresentation of the origin of that material, or
+ requiring that modified versions of such material be marked in
+ reasonable ways as different from the original version; or
+
+ d) Limiting the use for publicity purposes of names of licensors or
+ authors of the material; or
+
+ e) Declining to grant rights under trademark law for use of some
+ trade names, trademarks, or service marks; or
+
+ f) Requiring indemnification of licensors and authors of that
+ material by anyone who conveys the material (or modified versions of
+ it) with contractual assumptions of liability to the recipient, for
+ any liability that these contractual assumptions directly impose on
+ those licensors and authors.
+
+ All other non-permissive additional terms are considered "further
+restrictions" within the meaning of section 10. If the Program as you
+received it, or any part of it, contains a notice stating that it is
+governed by this License along with a term that is a further
+restriction, you may remove that term. If a license document contains
+a further restriction but permits relicensing or conveying under this
+License, you may add to a covered work material governed by the terms
+of that license document, provided that the further restriction does
+not survive such relicensing or conveying.
+
+ If you add terms to a covered work in accord with this section, you
+must place, in the relevant source files, a statement of the
+additional terms that apply to those files, or a notice indicating
+where to find the applicable terms.
+
+ Additional terms, permissive or non-permissive, may be stated in the
+form of a separately written license, or stated as exceptions;
+the above requirements apply either way.
+
+ 8. Termination.
+
+ You may not propagate or modify a covered work except as expressly
+provided under this License. Any attempt otherwise to propagate or
+modify it is void, and will automatically terminate your rights under
+this License (including any patent licenses granted under the third
+paragraph of section 11).
+
+ However, if you cease all violation of this License, then your
+license from a particular copyright holder is reinstated (a)
+provisionally, unless and until the copyright holder explicitly and
+finally terminates your license, and (b) permanently, if the copyright
+holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+ Moreover, your license from a particular copyright holder is
+reinstated permanently if the copyright holder notifies you of the
+violation by some reasonable means, this is the first time you have
+received notice of violation of this License (for any work) from that
+copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+ Termination of your rights under this section does not terminate the
+licenses of parties who have received copies or rights from you under
+this License. If your rights have been terminated and not permanently
+reinstated, you do not qualify to receive new licenses for the same
+material under section 10.
+
+ 9. Acceptance Not Required for Having Copies.
+
+ You are not required to accept this License in order to receive or
+run a copy of the Program. Ancillary propagation of a covered work
+occurring solely as a consequence of using peer-to-peer transmission
+to receive a copy likewise does not require acceptance. However,
+nothing other than this License grants you permission to propagate or
+modify any covered work. These actions infringe copyright if you do
+not accept this License. Therefore, by modifying or propagating a
+covered work, you indicate your acceptance of this License to do so.
+
+ 10. Automatic Licensing of Downstream Recipients.
+
+ Each time you convey a covered work, the recipient automatically
+receives a license from the original licensors, to run, modify and
+propagate that work, subject to this License. You are not responsible
+for enforcing compliance by third parties with this License.
+
+ An "entity transaction" is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an
+organization, or merging organizations. If propagation of a covered
+work results from an entity transaction, each party to that
+transaction who receives a copy of the work also receives whatever
+licenses to the work the party's predecessor in interest had or could
+give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if
+the predecessor has it or can get it with reasonable efforts.
+
+ You may not impose any further restrictions on the exercise of the
+rights granted or affirmed under this License. For example, you may
+not impose a license fee, royalty, or other charge for exercise of
+rights granted under this License, and you may not initiate litigation
+(including a cross-claim or counterclaim in a lawsuit) alleging that
+any patent claim is infringed by making, using, selling, offering for
+sale, or importing the Program or any portion of it.
+
+ 11. Patents.
+
+ A "contributor" is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based. The
+work thus licensed is called the contributor's "contributor version".
+
+ A contributor's "essential patent claims" are all patent claims
+owned or controlled by the contributor, whether already acquired or
+hereafter acquired, that would be infringed by some manner, permitted
+by this License, of making, using, or selling its contributor version,
+but do not include claims that would be infringed only as a
+consequence of further modification of the contributor version. For
+purposes of this definition, "control" includes the right to grant
+patent sublicenses in a manner consistent with the requirements of
+this License.
+
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
+patent license under the contributor's essential patent claims, to
+make, use, sell, offer for sale, import and otherwise run, modify and
+propagate the contents of its contributor version.
+
+ In the following three paragraphs, a "patent license" is any express
+agreement or commitment, however denominated, not to enforce a patent
+(such as an express permission to practice a patent or covenant not to
+sue for patent infringement). To "grant" such a patent license to a
+party means to make such an agreement or commitment not to enforce a
+patent against the party.
+
+ If you convey a covered work, knowingly relying on a patent license,
+and the Corresponding Source of the work is not available for anyone
+to copy, free of charge and under the terms of this License, through a
+publicly available network server or other readily accessible means,
+then you must either (1) cause the Corresponding Source to be so
+available, or (2) arrange to deprive yourself of the benefit of the
+patent license for this particular work, or (3) arrange, in a manner
+consistent with the requirements of this License, to extend the patent
+license to downstream recipients. "Knowingly relying" means you have
+actual knowledge that, but for the patent license, your conveying the
+covered work in a country, or your recipient's use of the covered work
+in a country, would infringe one or more identifiable patents in that
+country that you have reason to believe are valid.
+
+ If, pursuant to or in connection with a single transaction or
+arrangement, you convey, or propagate by procuring conveyance of, a
+covered work, and grant a patent license to some of the parties
+receiving the covered work authorizing them to use, propagate, modify
+or convey a specific copy of the covered work, then the patent license
+you grant is automatically extended to all recipients of the covered
+work and works based on it.
+
+ A patent license is "discriminatory" if it does not include within
+the scope of its coverage, prohibits the exercise of, or is
+conditioned on the non-exercise of one or more of the rights that are
+specifically granted under this License. You may not convey a covered
+work if you are a party to an arrangement with a third party that is
+in the business of distributing software, under which you make payment
+to the third party based on the extent of your activity of conveying
+the work, and under which the third party grants, to any of the
+parties who would receive the covered work from you, a discriminatory
+patent license (a) in connection with copies of the covered work
+conveyed by you (or copies made from those copies), or (b) primarily
+for and in connection with specific products or compilations that
+contain the covered work, unless you entered into that arrangement,
+or that patent license was granted, prior to 28 March 2007.
+
+ Nothing in this License shall be construed as excluding or limiting
+any implied license or other defenses to infringement that may
+otherwise be available to you under applicable patent law.
+
+ 12. No Surrender of Others' Freedom.
+
+ If conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License. If you cannot convey a
+covered work so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you may
+not convey it at all. For example, if you agree to terms that obligate you
+to collect a royalty for further conveying from those to whom you convey
+the Program, the only way you could satisfy both those terms and this
+License would be to refrain entirely from conveying the Program.
+
+ 13. Use with the GNU Affero General Public License.
+
+ Notwithstanding any other provision of this License, you have
+permission to link or combine any covered work with a work licensed
+under version 3 of the GNU Affero General Public License into a single
+combined work, and to convey the resulting work. The terms of this
+License will continue to apply to the part which is the covered work,
+but the special requirements of the GNU Affero General Public License,
+section 13, concerning interaction through a network will apply to the
+combination as such.
+
+ 14. Revised Versions of this License.
+
+ The Free Software Foundation may publish revised and/or new versions of
+the GNU General Public License from time to time. Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+ Each version is given a distinguishing version number. If the
+Program specifies that a certain numbered version of the GNU General
+Public License "or any later version" applies to it, you have the
+option of following the terms and conditions either of that numbered
+version or of any later version published by the Free Software
+Foundation. If the Program does not specify a version number of the
+GNU General Public License, you may choose any version ever published
+by the Free Software Foundation.
+
+ If the Program specifies that a proxy can decide which future
+versions of the GNU General Public License can be used, that proxy's
+public statement of acceptance of a version permanently authorizes you
+to choose that version for the Program.
+
+ Later license versions may give you additional or different
+permissions. However, no additional obligations are imposed on any
+author or copyright holder as a result of your choosing to follow a
+later version.
+
+ 15. Disclaimer of Warranty.
+
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
+APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
+HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
+OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
+IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
+ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+ 16. Limitation of Liability.
+
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
+THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
+GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
+USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
+DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
+PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
+EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGES.
+
+ 17. Interpretation of Sections 15 and 16.
+
+ If the disclaimer of warranty and limitation of liability provided
+above cannot be given local legal effect according to their terms,
+reviewing courts shall apply local law that most closely approximates
+an absolute waiver of all civil liability in connection with the
+Program, unless a warranty or assumption of liability accompanies a
+copy of the Program in return for a fee.
+
+ END OF TERMS AND CONDITIONS
+
+ How to Apply These Terms to Your New Programs
+
+ If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+ To do so, attach the following notices to the program. It is safest
+to attach them to the start of each source file to most effectively
+state the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+
+ Copyright (C)
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see .
+
+Also add information on how to contact you by electronic and paper mail.
+
+ If the program does terminal interaction, make it output a short
+notice like this when it starts in an interactive mode:
+
+ Copyright (C)
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+ This is free software, and you are welcome to redistribute it
+ under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License. Of course, your program's commands
+might be different; for a GUI interface, you would use an "about box".
+
+ You should also get your employer (if you work as a programmer) or school,
+if any, to sign a "copyright disclaimer" for the program, if necessary.
+For more information on this, and how to apply and follow the GNU GPL, see
+.
+
+ The GNU General Public License does not permit incorporating your program
+into proprietary programs. If your program is a subroutine library, you
+may consider it more useful to permit linking proprietary applications with
+the library. If this is what you want to do, use the GNU Lesser General
+Public License instead of this License. But first, please read
+.
diff --git a/include/cma-es/cmaes.h b/include/cma-es/cmaes.h
new file mode 100644
index 0000000..98d89ec
--- /dev/null
+++ b/include/cma-es/cmaes.h
@@ -0,0 +1,1658 @@
+/**
+ * @file cmaes.h
+ * @author Nikolaus Hansen, ported to C++ by Alexander Fabisch
+ *
+ * \mainpage
+ * CMA-ES for non-linear function minimization.
+ *
+ * Copyright of C implementation by Nikolaus Hansen (e-mail:
+ * hansen .AT. bionik.tu-berlin.de, hansen .AT. lri.fr), ported to C++ by
+ * Alexander Fabisch.
+ *
+ * \section lgpl License
+ *
+ * Copyright 1996, 2003, 2007, 2011 Nikolaus Hansen, Alexander Fabisch
+ *
+ * This file is part of CMA-ESpp.
+ *
+ * CMA-ESpp is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * CMA-ESpp is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with CMA-ESpp. If not, see .
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program. If not, see .
+ *
+ * \section purpose General Purpose
+ *
+ * The CMA-ES (Evolution Strategy with Covariance Matrix Adaptation) is a
+ * robust search/optimization method. The goal is to minimize a given
+ * objective function, \f$f: R^N \rightarrow R\f$. The CMA-ES should be
+ * applied, if e.g. BFGS and/or conjugate gradient methods fail due to a
+ * rugged search landscape (e.g. discontinuities, outliers, noise, local
+ * optima, etc.). Learning the covariance matrix in the CMA-ES is similar
+ * to learning the inverse Hessian matrix in a quasi-Newton method. On
+ * smooth landscapes the CMA-ES is roughly ten times slower than BFGS,
+ * assuming derivatives are not directly available. For up to \f$N=10\f$
+ * parameters the simplex direct search method (Nelder & Mead) is
+ * sometimes faster, but less robust than CMA-ES. On considerably hard
+ * problems the search (a single run) is expected to take between
+ * \f$100\cdot N\f$ and \f$300\cdot N^2\f$ function evaluations. But you
+ * might be lucky...
+ *
+ * \section application Application Remark
+ *
+ * The adaptation of the covariance matrix (e.g. by the CMA) is
+ * equivalent to a general linear transformation of the problem
+ * variables. Nevertheless, every problem specific knowledge about the
+ * best problem transformation should be exploited before starting the
+ * search procedure and an appropriate a priori transformation should be
+ * applied to the problem. In particular a decision should be taken
+ * whether variables, which are positive by nature, should be taken in
+ * the log scale. A hard lower variable bound can also be realized by
+ * taking the square. All variables should be re-scaled such that they
+ * "live" in a similar search range width (for example, but not
+ * necessarily between zero and one), such that the initial standard
+ * deviation can be chosen the same for all variables.
+ *
+ *
+ * \section links Links
+ * - http://www.lri.fr/~hansen/cmaesintro.html
+ * - http://www.lri.fr/~hansen/publications.html
+ *
+ * \section tut Tutorial
+ * - http://www.lri.fr/~hansen/cmatutorial.pdf
+ *
+ * \section references References
+ *
+ * - Hansen, N, and S. Kern (2004). Evaluating the CMA Evolution
+ * Strategy on Multimodal Test Functions. In: Eighth International
+ * Conference on Parallel Problem Solving from Nature PPSN VIII,
+ * Proceedings, pp. 282-291, Berlin: Springer
+ *
+ * - Hansen, N., S.D. Müller and P. Koumoutsakos (2003): Reducing the
+ * Time Complexity of the Derandomized Evolution Strategy with
+ * Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation,
+ * 11(1).
+ *
+ * - Hansen, N. and A. Ostermeier (2001). Completely Derandomized
+ * Self-Adaptation in Evolution Strategies. Evolutionary Computation,
+ * 9(2), pp. 159-195.
+ *
+ * - Hansen, N. and A. Ostermeier (1996). Adapting arbitrary normal
+ * mutation distributions in evolution strategies: The covariance
+ * matrix adaptation. In Proceedings of the 1996 IEEE International
+ * Conference on Evolutionary Computation, pp. 312-317.
+ */
+
+#pragma once
+
+#include "parameters.h"
+#include "random.h"
+#include "timings.h"
+#include "utils.h"
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+
+/**
+ * @class CMAES
+ * Evolution Strategies with Covariance Matrix Adaptation. The public interface
+ * of the optimization algorithm.
+ */
+template class CMAES {
+public:
+ /**
+ * Keys for get().
+ */
+ enum GetScalar {
+ NoScalar = 0,
+ AxisRatio = 1,
+ Eval = 2,
+ Evaluations = 2,
+ FctValue = 3,
+ FuncValue = 3,
+ FunValue = 3,
+ Fitness = 3,
+ FBestEver = 4,
+ Generation = 5,
+ Iteration = 5,
+ MaxEval = 6,
+ MaxFunEvals = 6,
+ StopMaxFunEvals = 6,
+ MaxGen = 7,
+ MaxIter = 7,
+ StopMaxIter = 7,
+ MaxAxisLength = 8,
+ MinAxisLength = 9,
+ MaxStdDev = 10,
+ MinStdDev = 11,
+ Dim = 12,
+ Dimension = 12,
+ Lambda = 13,
+ SampleSize = 13,
+ PopSize = 13,
+ Sigma = 14
+ };
+
+ /**
+ * Keys for getPtr().
+ */
+ enum GetVector {
+ NoVector = 0,
+ DiagC = 1,
+ DiagD = 2,
+ StdDev = 3,
+ XBestEver = 4,
+ XBest = 5,
+ XMean = 6
+ };
+
+ /**
+ * Keys for writeToFile().
+ */
+ enum WriteKey {
+ WCNone = 0,
+ WKResume = 1,
+ WKXMean = 2,
+ WKC = 4,
+ WKAll = 8,
+ WKFewInfo = 16,
+ WKFew = 32,
+ WKEval = 64,
+ WKFitness = 128,
+ WKFBestEver = 256,
+ WKCGeneration = 512,
+ WKSigma = 1024,
+ WKLambda = 2048,
+ WKB = 4096,
+ WKXBest = 8192,
+ WKClock = 16384,
+ WKDim = 32768
+ };
+
+private:
+ //! Implementation version.
+ std::string version;
+ //!< Random number generator.
+ Random rand;
+ //!< CMA-ES parameters.
+ Parameters params;
+
+ //! Step size.
+ T sigma;
+ //! Mean x vector, "parent".
+ T *xmean;
+ //! Best sample ever.
+ T *xBestEver;
+ //! x-vectors, lambda offspring.
+ T **population;
+ //! Sorting index of sample population.
+ int *index;
+ //! History of function values.
+ T *funcValueHistory;
+
+ T chiN;
+ //! Lower triangular matrix: i>=j for C[i][j].
+ T **C;
+ //! Matrix with normalize eigenvectors in columns.
+ T **B;
+ //! Axis lengths.
+ T *rgD;
+
+ //! Anisotropic evolution path (for covariance).
+ T *pc;
+ //! Isotropic evolution path (for step length).
+ T *ps;
+ //! Last mean.
+ T *xold;
+ //! Output vector.
+ T *output;
+ //! B*D*z.
+ T *BDz;
+ //! Temporary (random) vector used in different places.
+ T *tempRandom;
+ //! Objective function values of the population.
+ T *functionValues;
+ //!< Public objective function value array returned by init().
+ T *publicFitness;
+
+ //! Generation number.
+ T gen;
+ //! Algorithm state.
+ enum { INITIALIZED, SAMPLED, UPDATED } state;
+
+ // repeatedly used for output
+ T maxdiagC;
+ T mindiagC;
+ T maxEW;
+ T minEW;
+
+ bool eigensysIsUptodate;
+ bool doCheckEigen; //!< control via signals.par
+ T genOfEigensysUpdate;
+
+ T dMaxSignifKond;
+ T dLastMinEWgroesserNull;
+
+ bool isResumeDone;
+
+ time_t printtime;
+ time_t writetime; //!< ideally should keep track for each output file
+ time_t firstwritetime;
+ time_t firstprinttime;
+
+ std::string
+ stopMessage; //!< A message that contains all matched stop criteria.
+
+ std::string getTimeStr(void) {
+ time_t tm = time(0);
+ std::string timeStr(ctime(&tm));
+ return timeStr.substr(0, 24);
+ }
+
+ /**
+ * Calculating eigenvalues and vectors.
+ * @param rgtmp (input) N+1-dimensional vector for temporal use.
+ * @param diag (output) N eigenvalues.
+ * @param Q (output) Columns are normalized eigenvectors.
+ */
+ void eigen(T *diag, T **Q, T *rgtmp) {
+ assert(rgtmp && "eigen(): input parameter rgtmp must be non-NULL");
+
+ if (C != Q) // copy C to Q
+ {
+ for (int i = 0; i < params.N; ++i)
+ for (int j = 0; j <= i; ++j)
+ Q[i][j] = Q[j][i] = C[i][j];
+ }
+
+ householder(Q, diag, rgtmp);
+ ql(diag, rgtmp, Q);
+ }
+
+ /**
+ * Exhaustive test of the output of the eigendecomposition, needs O(n^3)
+ * operations writes to error file.
+ * @return number of detected inaccuracies
+ */
+ int checkEigen(T *diag, T **Q) {
+ // compute Q diag Q^T and Q Q^T to check
+ int res = 0;
+ for (int i = 0; i < params.N; ++i)
+ for (int j = 0; j < params.N; ++j) {
+ T cc = 0., dd = 0.;
+ for (int k = 0; k < params.N; ++k) {
+ cc += diag[k] * Q[i][k] * Q[j][k];
+ dd += Q[i][k] * Q[j][k];
+ }
+ // check here, is the normalization the right one?
+ const bool cond1 = fabs(cc - C[i > j ? i : j][i > j ? j : i]) /
+ sqrt(C[i][i] * C[j][j]) >
+ T(1e-10);
+ const bool cond2 =
+ fabs(cc - C[i > j ? i : j][i > j ? j : i]) > T(3e-14);
+ if (cond1 && cond2) {
+ std::stringstream s;
+ s << i << " " << j << ": " << cc << " "
+ << C[i > j ? i : j][i > j ? j : i] << ", "
+ << cc - C[i > j ? i : j][i > j ? j : i];
+ if (params.logWarnings)
+ params.logStream << "eigen(): imprecise result detected " << s.str()
+ << std::endl;
+ ++res;
+ }
+ if (std::fabs(dd - (i == j)) > T(1e-10)) {
+ std::stringstream s;
+ s << i << " " << j << " " << dd;
+ if (params.logWarnings)
+ params.logStream
+ << "eigen(): imprecise result detected (Q not orthog.)"
+ << s.str() << std::endl;
+ ++res;
+ }
+ }
+ return res;
+ }
+
+ /**
+ * Symmetric tridiagonal QL algorithm, iterative.
+ * Computes the eigensystem from a tridiagonal matrix in roughtly 3N^3
+ * operations code adapted from Java JAMA package, function tql2.
+ * @param d input: Diagonale of tridiagonal matrix. output: eigenvalues.
+ * @param e input: [1..n-1], off-diagonal, output from Householder
+ * @param V input: matrix output of Householder. output: basis of
+ * eigenvectors, according to d
+ */
+ void ql(T *d, T *e, T **V) {
+ const int n = params.N;
+ T f(0);
+ T tst1(0);
+ const T eps(2.22e-16); // 2.0^-52.0 = 2.22e-16
+
+ // shift input e
+ T *ep1 = e;
+ for (T *ep2 = e + 1, *const end = e + n; ep2 != end; ep1++, ep2++)
+ *ep1 = *ep2;
+ *ep1 = T(0); // never changed again
+
+ for (int l = 0; l < n; l++) {
+ // find small subdiagonal element
+ T &el = e[l];
+ T &dl = d[l];
+ const T smallSDElement = std::fabs(dl) + std::fabs(el);
+ if (tst1 < smallSDElement)
+ tst1 = smallSDElement;
+ const T epsTst1 = eps * tst1;
+ int m = l;
+ while (m < n) {
+ if (std::fabs(e[m]) <= epsTst1)
+ break;
+ m++;
+ }
+
+ // if m == l, d[l] is an eigenvalue, otherwise, iterate.
+ if (m > l) {
+ do {
+ T h, g = dl;
+ T &dl1r = d[l + 1];
+ T p = (dl1r - g) / (T(2) * el);
+ T r = myhypot(p, T(1));
+
+ // compute implicit shift
+ if (p < 0)
+ r = -r;
+ const T pr = p + r;
+ dl = el / pr;
+ h = g - dl;
+ const T dl1 = el * pr;
+ dl1r = dl1;
+ for (int i = l + 2; i < n; i++)
+ d[i] -= h;
+ f += h;
+
+ // implicit QL transformation.
+ p = d[m];
+ T c(1);
+ T c2(1);
+ T c3(1);
+ const T el1 = e[l + 1];
+ T s(0);
+ T s2(0);
+ for (int i = m - 1; i >= l; i--) {
+ c3 = c2;
+ c2 = c;
+ s2 = s;
+ const T &ei = e[i];
+ g = c * ei;
+ h = c * p;
+ r = myhypot(p, ei);
+ e[i + 1] = s * r;
+ s = ei / r;
+ c = p / r;
+ const T &di = d[i];
+ p = c * di - s * g;
+ d[i + 1] = h + s * (c * g + s * di);
+
+ // accumulate transformation.
+ for (int k = 0; k < n; k++) {
+ T &Vki1 = V[k][i + 1];
+ h = Vki1;
+ T &Vki = V[k][i];
+ Vki1 = s * Vki + c * h;
+ Vki *= c;
+ Vki -= s * h;
+ }
+ }
+ p = -s * s2 * c3 * el1 * el / dl1;
+ el = s * p;
+ dl = c * p;
+ } while (std::fabs(el) > epsTst1);
+ }
+ dl += f;
+ el = 0.0;
+ }
+ }
+
+ /**
+ * Householder transformation of a symmetric matrix V into tridiagonal form.
+ * Code slightly adapted from the Java JAMA package, function private tred2().
+ * @param V input: symmetric nxn-matrix. output: orthogonal transformation
+ * matrix: tridiag matrix == V* V_in* V^t.
+ * @param d output: diagonal
+ * @param e output: [0..n-1], off diagonal (elements 1..n-1)
+ */
+ void householder(T **V, T *d, T *e) {
+ const int n = params.N;
+
+ for (int j = 0; j < n; j++) {
+ d[j] = V[n - 1][j];
+ }
+
+ // Householder reduction to tridiagonal form
+
+ for (int i = n - 1; i > 0; i--) {
+ // scale to avoid under/overflow
+ T scale = 0.0;
+ T h = 0.0;
+ for (T *pd = d, *const dend = d + i; pd != dend; pd++) {
+ scale += std::fabs(*pd);
+ }
+ if (scale == 0.0) {
+ e[i] = d[i - 1];
+ for (int j = 0; j < i; j++) {
+ d[j] = V[i - 1][j];
+ V[i][j] = 0.0;
+ V[j][i] = 0.0;
+ }
+ } else {
+ // generate Householder vector
+ for (T *pd = d, *const dend = d + i; pd != dend; pd++) {
+ *pd /= scale;
+ h += *pd * *pd;
+ }
+ T &dim1 = d[i - 1];
+ T f = dim1;
+ T g = f > 0 ? -std::sqrt(h) : std::sqrt(h);
+ e[i] = scale * g;
+ h = h - f * g;
+ dim1 = f - g;
+ memset((void *)e, 0, (size_t)i * sizeof(T));
+
+ // apply similarity transformation to remaining columns
+ for (int j = 0; j < i; j++) {
+ f = d[j];
+ V[j][i] = f;
+ T &ej = e[j];
+ g = ej + V[j][j] * f;
+ for (int k = j + 1; k <= i - 1; k++) {
+ T &Vkj = V[k][j];
+ g += Vkj * d[k];
+ e[k] += Vkj * f;
+ }
+ ej = g;
+ }
+ f = 0.0;
+ for (int j = 0; j < i; j++) {
+ T &ej = e[j];
+ ej /= h;
+ f += ej * d[j];
+ }
+ T hh = f / (h + h);
+ for (int j = 0; j < i; j++) {
+ e[j] -= hh * d[j];
+ }
+ for (int j = 0; j < i; j++) {
+ T &dj = d[j];
+ f = dj;
+ g = e[j];
+ for (int k = j; k <= i - 1; k++) {
+ V[k][j] -= f * e[k] + g * d[k];
+ }
+ dj = V[i - 1][j];
+ V[i][j] = 0.0;
+ }
+ }
+ d[i] = h;
+ }
+
+ // accumulate transformations
+ const int nm1 = n - 1;
+ for (int i = 0; i < nm1; i++) {
+ T h;
+ T &Vii = V[i][i];
+ V[n - 1][i] = Vii;
+ Vii = 1.0;
+ h = d[i + 1];
+ if (h != 0.0) {
+ for (int k = 0; k <= i; k++) {
+ d[k] = V[k][i + 1] / h;
+ }
+ for (int j = 0; j <= i; j++) {
+ T g = 0.0;
+ for (int k = 0; k <= i; k++) {
+ T *Vk = V[k];
+ g += Vk[i + 1] * Vk[j];
+ }
+ for (int k = 0; k <= i; k++) {
+ V[k][j] -= g * d[k];
+ }
+ }
+ }
+ for (int k = 0; k <= i; k++) {
+ V[k][i + 1] = 0.0;
+ }
+ }
+ for (int j = 0; j < n; j++) {
+ T &Vnm1j = V[n - 1][j];
+ d[j] = Vnm1j;
+ Vnm1j = 0.0;
+ }
+ V[n - 1][n - 1] = 1.0;
+ e[0] = 0.0;
+ }
+
+ /**
+ * Dirty index sort.
+ */
+ void sortIndex(const T *rgFunVal, int *iindex, int n) {
+ int i, j;
+ for (i = 1, iindex[0] = 0; i < n; ++i) {
+ for (j = i; j > 0; --j) {
+ if (rgFunVal[iindex[j - 1]] < rgFunVal[i])
+ break;
+ iindex[j] = iindex[j - 1]; // shift up
+ }
+ iindex[j] = i;
+ }
+ }
+
+ void adaptC2(const int hsig) {
+ const int N = params.N;
+ bool diag = params.diagonalCov == 1 || params.diagonalCov >= gen;
+
+ if (params.ccov != T(0)) {
+ // definitions for speeding up inner-most loop
+ const T mucovinv = T(1) / params.mucov;
+ const T commonFactor = params.ccov * (diag ? (N + T(1.5)) / T(3) : T(1));
+ const T ccov1 = std::min(commonFactor * mucovinv, T(1));
+ const T ccovmu = std::min(commonFactor * (T(1) - mucovinv), T(1) - ccov1);
+ const T sigmasquare = sigma * sigma;
+ const T onemccov1ccovmu = T(1) - ccov1 - ccovmu;
+ const T longFactor =
+ (T(1) - hsig) * params.ccumcov * (T(2) - params.ccumcov);
+
+ eigensysIsUptodate = false;
+
+ // update covariance matrix
+ for (int i = 0; i < N; ++i)
+ for (int j = diag ? i : 0; j <= i; ++j) {
+ T &Cij = C[i][j];
+ Cij = onemccov1ccovmu * Cij +
+ ccov1 * (pc[i] * pc[j] + longFactor * Cij);
+ for (int k = 0; k < params.mu; ++k) { // additional rank mu update
+ const T *rgrgxindexk = population[index[k]];
+ Cij += ccovmu * params.weights[k] * (rgrgxindexk[i] - xold[i]) *
+ (rgrgxindexk[j] - xold[j]) / sigmasquare;
+ }
+ }
+ // update maximal and minimal diagonal value
+ maxdiagC = mindiagC = C[0][0];
+ for (int i = 1; i < N; ++i) {
+ const T &Cii = C[i][i];
+ if (maxdiagC < Cii)
+ maxdiagC = Cii;
+ else if (mindiagC > Cii)
+ mindiagC = Cii;
+ }
+ }
+ }
+
+ /**
+ * Treats minimal standard deviations and numeric problems. Increases sigma.
+ */
+ void testMinStdDevs(void) {
+ if (!this->params.rgDiffMinChange)
+ return;
+
+ for (int i = 0; i < params.N; ++i)
+ while (this->sigma * std::sqrt(this->C[i][i]) <
+ this->params.rgDiffMinChange[i])
+ this->sigma *= std::exp(T(0.05) + this->params.cs / this->params.damps);
+ }
+
+ /**
+ * Adds the mutation sigma*B*(D*z).
+ * @param x Search space vector.
+ * @param eps Mutation factor.
+ */
+ void addMutation(T *x, T eps = 1.0) {
+ for (int i = 0; i < params.N; ++i)
+ tempRandom[i] = rgD[i] * rand.gauss();
+ for (int i = 0; i < params.N; ++i) {
+ T sum = 0.0;
+ for (int j = 0; j < params.N; ++j)
+ sum += B[i][j] * tempRandom[j];
+ x[i] = xmean[i] + eps * sigma * sum;
+ }
+ }
+
+ /**
+ * This hack reads key words from input key for data to be written to
+ * a file, see file signals.par as input file. The length of the keys
+ * is mostly fixed. If the key phrase does not match the expectation the
+ * output might be strange.
+ */
+ void writeToStream(int key, std::ostream &file) {
+ if (key & WKResume) {
+ file << std::endl << "# resume " << params.N << std::endl;
+ file << "xmean" << std::endl;
+ writeToStream(WKXMean, file);
+ file << "path for sigma" << std::endl;
+ for (int i = 0; i < params.N; ++i)
+ file << ps[i] << (i == params.N - 1 ? "\n" : "\t");
+ file << "path for C" << std::endl;
+ for (int i = 0; i < params.N; ++i)
+ file << pc[i] << (i == params.N - 1 ? "\n" : "\t");
+ file << "sigma " << sigma << std::endl;
+ // note than B and D might not be up-to-date
+ file << "covariance matrix" << std::endl;
+ writeToStream(WKC, file);
+ }
+ if (key & WKXMean) {
+ for (int i = 0; i < params.N; ++i)
+ file << (i == 0 ? "" : "\t") << xmean[i];
+ file << std::endl;
+ }
+ if (key & WKC) {
+ for (int i = 0; i < params.N; ++i)
+ for (int j = 0; j <= i; ++j) {
+ file << C[i][j];
+ if (j == i)
+ file << std::endl;
+ else
+ file << '\t';
+ }
+ file << std::endl;
+ }
+ if (key & WKAll) {
+ time_t ti = time(0);
+ file << std::endl
+ << "# --------- " << asctime(localtime(&ti)) << std::endl;
+ file << " N " << params.N << std::endl;
+ file << "function evaluations " << (long)countevals << std::endl;
+ file << "elapsed (CPU) time [s] " << std::setprecision(2)
+ << eigenTimings.totaltotaltime << std::endl;
+ file << "function value f(x)=" << population[index[0]][params.N]
+ << std::endl;
+ file << "maximal standard deviation " << sigma * std::sqrt(maxdiagC)
+ << std::endl;
+ file << "minimal standard deviation " << sigma * std::sqrt(mindiagC)
+ << std::endl;
+ file << "sigma " << sigma << std::endl;
+ file << "axisratio "
+ << (maxElement(rgD, params.N) / minElement(rgD, params.N))
+ << std::endl;
+ file << "xbestever found after " << std::setprecision(0)
+ << xBestEver[params.N + 1] << "evaluations, function value "
+ << xBestEver[params.N] << std::endl;
+ for (int i = 0; i < params.N; ++i)
+ file << " " << std::setw(12) << xBestEver[i]
+ << (i % 5 == 4 || i == params.N - 1 ? '\n' : ' ');
+ file << "xbest (of last generation, function value "
+ << population[index[0]][params.N] << ")" << std::endl;
+ for (int i = 0; i < params.N; ++i)
+ file << " " << std::setw(12) << population[index[0]][i]
+ << (i % 5 == 4 || i == params.N - 1 ? '\n' : ' ');
+ file << "xmean" << std::endl;
+ for (int i = 0; i < params.N; ++i)
+ file << " " << std::setw(12) << xmean[i]
+ << (i % 5 == 4 || i == params.N - 1 ? '\n' : ' ');
+ file << "Standard deviation of coordinate axes (sigma*sqrt(diag(C)))"
+ << std::endl;
+ for (int i = 0; i < params.N; ++i)
+ file << " " << std::setw(12) << sigma * std::sqrt(C[i][i])
+ << (i % 5 == 4 || i == params.N - 1 ? '\n' : ' ');
+ file << "Main axis lengths of mutation ellipsoid (sigma*diag(D))"
+ << std::endl;
+ for (int i = 0; i < params.N; ++i)
+ tempRandom[i] = rgD[i];
+ std::sort(tempRandom, tempRandom + params.N);
+ for (int i = 0; i < params.N; ++i)
+ file << " " << std::setw(12) << sigma * tempRandom[params.N - 1 - i]
+ << (i % 5 == 4 || i == params.N - 1 ? '\n' : ' ');
+ file << "Longest axis (b_i where d_ii=max(diag(D))" << std::endl;
+ int k = maxIndex(rgD, params.N);
+ for (int i = 0; i < params.N; ++i)
+ file << " " << std::setw(12) << B[i][k]
+ << (i % 5 == 4 || i == params.N - 1 ? '\n' : ' ');
+ file << "Shortest axis (b_i where d_ii=max(diag(D))" << std::endl;
+ k = minIndex(rgD, params.N);
+ for (int i = 0; i < params.N; ++i)
+ file << " " << std::setw(12) << B[i][k]
+ << (i % 5 == 4 || i == params.N - 1 ? '\n' : ' ');
+ file << std::endl;
+ }
+ if (key & WKFewInfo) {
+ file << " Iter\tFevals\tFunction Value\tSigma\tMaxCoorDev\tMinCoorDev\t"
+ << "AxisRatio\tMinDii\tTime in eig" << std::endl;
+ file << std::endl;
+ }
+ if (key & WKFew) {
+ file << (int)gen << "\t" << (int)countevals << "\t"
+ << functionValues[index[0]] << "\t\t" << sigma << " "
+ << sigma * std::sqrt(maxdiagC) << "\t" << sigma * std::sqrt(mindiagC)
+ << "\t" << std::scientific << std::setprecision(2)
+ << std::sqrt(maxEW / minEW) << "\t" << std::sqrt(minEW) << " "
+ << eigenTimings.totaltotaltime;
+ file << std::endl;
+ }
+ if (key & WKEval) {
+ file << countevals;
+ file << std::endl;
+ }
+ if (key & WKFitness) {
+ for (int i = 0; i < params.N; ++i)
+ file << (i == 0 ? "" : "\t") << functionValues[index[i]];
+ file << std::endl;
+ }
+ if (key & WKFBestEver) {
+ file << xBestEver[params.N] << std::endl;
+ }
+ if (key & WKCGeneration) {
+ file << gen << std::endl;
+ }
+ if (key & WKSigma) {
+ file << sigma << std::endl;
+ }
+ if (key & WKLambda) {
+ file << params.lambda << std::endl;
+ }
+ if (key & WKB) {
+ int *iindex = new int[params.N];
+ sortIndex(rgD, iindex, params.N);
+ for (int i = 0; i < params.N; ++i)
+ for (int j = 0; j < params.N; ++j) {
+ file << B[j][iindex[params.N - 1 - i]];
+ if (j != params.N - 1)
+ file << '\t';
+ else
+ file << std::endl;
+ }
+ delete[] iindex;
+ iindex = 0;
+ file << std::endl;
+ }
+ if (key & WKXBest) {
+ for (int i = 0; i < params.N; ++i)
+ file << (i == 0 ? "" : "\t") << population[index[0]][i];
+ file << std::endl;
+ }
+ if (key & WKClock) {
+ eigenTimings.update();
+ file << eigenTimings.totaltotaltime << " " << eigenTimings.tictoctime
+ << std::endl;
+ }
+ if (key & WKDim) {
+ file << params.N;
+ file << std::endl;
+ }
+ }
+
+public:
+ T countevals; //!< objective function evaluations
+ Timing eigenTimings;
+
+ CMAES() : version("1.0alpha") {}
+
+ /**
+ * Releases the dynamically allocated memory, including that of the return
+ * value of init().
+ */
+ ~CMAES() {
+ delete[] pc;
+ delete[] ps;
+ delete[] tempRandom;
+ delete[] BDz;
+ delete[]-- xmean;
+ delete[]-- xold;
+ delete[]-- xBestEver;
+ delete[]-- output;
+ delete[] rgD;
+ for (int i = 0; i < params.N; ++i) {
+ delete[] C[i];
+ delete[] B[i];
+ }
+ for (int i = 0; i < params.lambda; ++i)
+ delete[]-- population[i];
+ delete[] population;
+ delete[] C;
+ delete[] B;
+ delete[] index;
+ delete[] publicFitness;
+ delete[]-- functionValues;
+ delete[]-- funcValueHistory;
+ }
+
+ /**
+ * Initializes the CMA-ES algorithm.
+ * @param parameters The CMA-ES parameters.
+ * @return Array of size lambda that can be used to assign fitness values and
+ * pass them to updateDistribution(). Not that after the desctructor
+ * was called, the array is deleted.
+ */
+ T *init(const Parameters ¶meters) {
+ params = parameters;
+
+ stopMessage = "";
+
+ T trace(0);
+ for (int i = 0; i < params.N; ++i)
+ trace += params.rgInitialStds[i] * params.rgInitialStds[i];
+ sigma = std::sqrt(trace / params.N);
+
+ chiN = std::sqrt((T)params.N) * (T(1) - T(1) / (T(4) * params.N) +
+ T(1) / (T(21) * params.N * params.N));
+ eigensysIsUptodate = true;
+ doCheckEigen = false;
+ genOfEigensysUpdate = 0;
+ isResumeDone = false;
+
+ T dtest;
+ for (dtest = T(1); dtest && dtest < T(1.1) * dtest; dtest *= T(2))
+ if (dtest == dtest + T(1))
+ break;
+ dMaxSignifKond = dtest / T(1000); // not sure whether this is really save,
+ // 100 does not work well enough
+
+ gen = 0;
+ countevals = 0;
+ state = INITIALIZED;
+ dLastMinEWgroesserNull = T(1);
+ printtime = writetime = firstwritetime = firstprinttime = 0;
+
+ pc = new T[params.N];
+ ps = new T[params.N];
+ tempRandom = new T[params.N + 1];
+ BDz = new T[params.N];
+ xmean = new T[params.N + 2];
+ xmean[0] = params.N;
+ ++xmean;
+ xold = new T[params.N + 2];
+ xold[0] = params.N;
+ ++xold;
+ xBestEver = new T[params.N + 3];
+ xBestEver[0] = params.N;
+ ++xBestEver;
+ xBestEver[params.N] = std::numeric_limits::max();
+ output = new T[params.N + 2];
+ output[0] = params.N;
+ ++output;
+ rgD = new T[params.N];
+ C = new T *[params.N];
+ B = new T *[params.N];
+ publicFitness = new T[params.lambda];
+ functionValues = new T[params.lambda + 1];
+ functionValues[0] = params.lambda;
+ ++functionValues;
+ const int historySize = 10 + (int)ceil(3. * 10. * params.N / params.lambda);
+ funcValueHistory = new T[historySize + 1];
+ funcValueHistory[0] = (T)historySize;
+ funcValueHistory++;
+
+ for (int i = 0; i < params.N; ++i) {
+ C[i] = new T[i + 1];
+ B[i] = new T[params.N];
+ }
+ index = new int[params.lambda];
+ for (int i = 0; i < params.lambda; ++i)
+ index[i] = i;
+ population = new T *[params.lambda];
+ for (int i = 0; i < params.lambda; ++i) {
+ population[i] = new T[params.N + 2];
+ population[i][0] = params.N;
+ population[i]++;
+ for (int j = 0; j < params.N; j++)
+ population[i][j] = 0.0;
+ }
+
+ // initialize newed space
+ for (int i = 0; i < params.lambda; i++) {
+ functionValues[i] = std::numeric_limits::max();
+ }
+ for (int i = 0; i < historySize; i++) {
+ funcValueHistory[i] = std::numeric_limits::max();
+ }
+ for (int i = 0; i < params.N; ++i)
+ for (int j = 0; j < i; ++j)
+ C[i][j] = B[i][j] = B[j][i] = 0.;
+
+ for (int i = 0; i < params.N; ++i) {
+ B[i][i] = T(1);
+ C[i][i] = rgD[i] = params.rgInitialStds[i] * std::sqrt(params.N / trace);
+ C[i][i] *= C[i][i];
+ pc[i] = ps[i] = T(0);
+ }
+ minEW = minElement(rgD, params.N);
+ minEW = minEW * minEW;
+ maxEW = maxElement(rgD, params.N);
+ maxEW = maxEW * maxEW;
+
+ maxdiagC = C[0][0];
+ for (int i = 1; i < params.N; ++i)
+ if (maxdiagC < C[i][i])
+ maxdiagC = C[i][i];
+ mindiagC = C[0][0];
+ for (int i = 1; i < params.N; ++i)
+ if (mindiagC > C[i][i])
+ mindiagC = C[i][i];
+
+ for (int i = 0; i < params.N; ++i)
+ xmean[i] = xold[i] = params.xstart[i];
+ // use in case xstart as typicalX
+ if (params.typicalXcase)
+ for (int i = 0; i < params.N; ++i)
+ xmean[i] += sigma * rgD[i] * rand.gauss();
+
+ if (params.resumefile != "")
+ resumeDistribution(params.resumefile);
+
+ return publicFitness;
+ }
+
+ /**
+ * Well, says hello.
+ * @return eg. "(5,10)-CMA-ES(mu_eff=3.4), Ver="1.0alpha", dimension=9"
+ */
+ std::string sayHello() {
+ std::stringstream stream;
+ stream << "(" << params.mu << "," << params.lambda
+ << ")-CMA-ES(mu_eff=" << std::setprecision(1) << params.mueff
+ << "), Ver=\"" << version << "\", dimension=" << params.N
+ << ", diagonalIterations=" << (long)params.diagonalCov << " ("
+ << getTimeStr() << ")";
+ return stream.str();
+ }
+
+ /**
+ * Allows to restart with saved internal state (distribution) variables (use
+ * writeToFile() for saving). Keyword "resume" followed by a filename in
+ * initials.par invokes this function during initialization. Searches in
+ * filename for the last occurrence of word "resume", followed by a dimension
+ * number, and reads the subsequent values for xmean, evolution paths ps and
+ * pc, sigma and covariance matrix. Note that init() needs to be called
+ * before calling resume_distribution() explicitely. In the former all the
+ * remaining (strategy-)parameters are set. It can be useful to edit the
+ * written parameters, in particular to increase sigma, before resume.
+ *
+ * Not all internal state parameters are recovered. In particular generation
+ * number and xbestever are not restored. For covariance matrices with large
+ * condition numbers the writing precision of 6 digits is not sufficient and
+ * resume will lead to poor result.
+ * @param filename A file, that was written presumably by writeToFile().
+ */
+ void resumeDistribution(const std::string &filename) {
+ std::ifstream file(filename.c_str());
+ if (!file.is_open())
+ throw std::runtime_error("resumeDistribution(): could not open '" +
+ filename + "'");
+
+ std::streampos lastResume = 0;
+ std::string entry = "";
+ while (!file.eof()) {
+ file >> entry;
+ if (entry == "resume") {
+ lastResume = file.tellg();
+ break;
+ }
+ }
+ file.clear();
+ file.seekg(lastResume);
+
+ int n = 0;
+ file >> n;
+ if (n != params.N)
+ throw std::runtime_error(
+ "resumeDistribution(): Dimension numbers do not match");
+
+ // find next "xmean" entry
+ while (!file.eof()) {
+ file >> entry;
+ if (entry == "xmean")
+ break;
+ }
+ // read xmean
+ if (file.eof())
+ throw std::runtime_error("resumeDistribution(): 'xmean' not found");
+ for (int i = 0; i < n; i++)
+ file >> xmean[i];
+ file.clear();
+ file.seekg(lastResume);
+
+ // find next "path for sigma" entry
+ while (!file.eof()) {
+ file >> entry;
+ if (entry == "path") {
+ std::string temp = "";
+ file >> temp;
+ entry += " " + temp;
+ file >> temp;
+ entry += " " + temp;
+ if (entry == "path for sigma")
+ break;
+ }
+ }
+ // read ps
+ if (file.eof())
+ throw std::runtime_error(
+ "resumeDistribution(): 'path for sigma' not found");
+ for (int i = 0; i < n; i++)
+ file >> ps[i];
+ file.clear();
+ file.seekg(lastResume);
+
+ // find next "path for C" entry
+ while (!file.eof()) {
+ file >> entry;
+ if (entry == "path") {
+ std::string temp = "";
+ file >> temp;
+ entry += " " + temp;
+ file >> temp;
+ entry += " " + temp;
+ if (entry == "path for C")
+ break;
+ }
+ }
+ // read pc
+ if (file.eof())
+ throw std::runtime_error("resumeDistribution(): 'path for C' not found");
+ for (int i = 0; i < n; i++)
+ file >> pc[i];
+ file.clear();
+ file.seekg(lastResume);
+
+ // find next "sigma" entry
+ while (!file.eof()) {
+ file >> entry;
+ if (entry == "sigma")
+ break;
+ }
+ // read pc
+ if (file.eof())
+ throw std::runtime_error("resumeDistribution(): 'sigma' not found");
+ file >> sigma;
+ file.clear();
+ file.seekg(lastResume);
+
+ // find next "covariance matrix" entry
+ while (!file.eof()) {
+ file >> entry;
+ if (entry == "covariance") {
+ std::string temp = "";
+ file >> temp;
+ entry += " " + temp;
+ if (entry == "covariance matrix")
+ break;
+ }
+ }
+ // read C
+ if (file.eof())
+ throw std::runtime_error(
+ "resumeDistribution(): 'covariance matrix' not found");
+ for (int i = 0; i < params.N; ++i)
+ for (int j = 0; j <= i; ++j)
+ file >> C[i][j];
+
+ eigensysIsUptodate = false;
+ isResumeDone = true;
+ updateEigensystem(true);
+ }
+
+ /**
+ * The search space vectors have a special form: they are arrays with N+1
+ * entries. Entry number -1 is the dimension of the search space N.
+ * @return A pointer to a "population" of lambda N-dimensional multivariate
+ * normally distributed samples.
+ */
+ T *const *samplePopulation() {
+ bool diag = params.diagonalCov == 1 || params.diagonalCov >= gen;
+
+ // calculate eigensystem
+ if (!eigensysIsUptodate) {
+ if (!diag)
+ updateEigensystem(false);
+ else {
+ for (int i = 0; i < params.N; ++i)
+ rgD[i] = std::sqrt(C[i][i]);
+ minEW = square(minElement(rgD, params.N));
+ maxEW = square(maxElement(rgD, params.N));
+ eigensysIsUptodate = true;
+ eigenTimings.start();
+ }
+ }
+
+ testMinStdDevs();
+
+ for (int iNk = 0; iNk < params.lambda;
+ ++iNk) { // generate scaled random vector D*z
+ T *rgrgxink = population[iNk];
+ for (int i = 0; i < params.N; ++i)
+ if (diag)
+ rgrgxink[i] = xmean[i] + sigma * rgD[i] * rand.gauss();
+ else
+ tempRandom[i] = rgD[i] * rand.gauss();
+ if (!diag)
+ for (int i = 0; i < params.N; ++i) // add mutation sigma*B*(D*z)
+ {
+ T sum = 0.0;
+ for (int j = 0; j < params.N; ++j)
+ sum += B[i][j] * tempRandom[j];
+ rgrgxink[i] = xmean[i] + sigma * sum;
+ }
+ }
+
+ if (state == UPDATED || gen == 0)
+ ++gen;
+ state = SAMPLED;
+
+ return population;
+ }
+
+ /**
+ * Can be called after samplePopulation() to resample single solutions of the
+ * population as often as desired. Useful to implement a box constraints
+ * (boundary) handling.
+ * @param i Index to an element of the returned value of samplePopulation().
+ * population[index] will be resampled where \f$0\leq i<\lambda\f$
+ * must hold.
+ * @return A pointer to the resampled "population".
+ */
+ T *const *reSampleSingle(int i) {
+ T *x;
+ assert(i >= 0 && i < params.lambda &&
+ "reSampleSingle(): index must be between 0 and sp.lambda");
+ x = population[i];
+ addMutation(x);
+ return population;
+ }
+
+ /**
+ * Can be called after samplePopulation() to resample single solutions. In
+ * general, the function can be used to sample as many independent
+ * mean+sigma*Normal(0,C) distributed vectors as desired.
+ *
+ * Input x can be a pointer to an element of the vector returned by
+ * samplePopulation() but this is inconsistent with the const qualifier of the
+ * returned value and therefore rather reSampleSingle() should be used.
+ * @param x Solution vector that gets sampled a new value. If x == NULL new
+ * memory is allocated and must be released by the user using
+ * delete[].
+ * @return A pointer to the resampled solution vector, equals input x for
+ * x != NULL on input.
+ */
+ T *sampleSingleInto(T *x) {
+ if (!x)
+ x = new T[params.N];
+ addMutation(x);
+ return x;
+ }
+
+ /**
+ * Can be called after samplePopulation() to resample single solutions. In
+ * general, the function can be used to sample as many independent
+ * mean+sigma*Normal(0,C) distributed vectors as desired.
+ * @param x Element of the return value of samplePopulation(), that is
+ * pop[0..\f$\lambda\f$]. This solution vector of the population gets
+ * sampled a new value.
+ * @return A pointer to the resampled "population" member.
+ */
+ T const *reSampleSingleOld(T *x) {
+ assert(x && "reSampleSingleOld(): Missing input x");
+ addMutation(x);
+ return x;
+ }
+
+ /**
+ * Used to reevaluate a slightly disturbed solution for an uncertaintly
+ * measurement. In case if x == NULL on input, the memory of the returned x
+ * must be released.
+ * @param x Solution vector that gets sampled a new value. If x == NULL new
+ * memory is allocated and must be released by the user using
+ * delete[] x.
+ * @param pxmean Mean vector \f$\mu\f$ for perturbation.
+ * @param eps Scale factor \f$\epsilon\f$ for perturbation:
+ * \f$x \sim \mu + \epsilon \sigma N(0,C)\f$.
+ * @return A pointer to the perturbed solution vector, equals input x for
+ * x != NULL.
+ */
+ T *perturbSolutionInto(T *x, T const *pxmean, T eps) {
+ if (!x)
+ x = new T[params.N];
+ assert(pxmean && "perturbSolutionInto(): pxmean was not given");
+ addMutation(x, eps);
+ return x;
+ }
+
+ /**
+ * Core procedure of the CMA-ES algorithm. Sets a new mean value and estimates
+ * the new covariance matrix and a new step size for the normal search
+ * distribution.
+ * @param fitnessValues An array of \f$\lambda\f$ function values.
+ * @return Mean value of the new distribution.
+ */
+ T *updateDistribution(const T *fitnessValues) {
+ const int N = params.N;
+ bool diag = params.diagonalCov == 1 || params.diagonalCov >= gen;
+
+ assert(state != UPDATED &&
+ "updateDistribution(): You need to call "
+ "samplePopulation() before update can take place.");
+ assert(fitnessValues &&
+ "updateDistribution(): No fitness function value array input.");
+
+ if (state == SAMPLED) // function values are delivered here
+ countevals += params.lambda;
+ else if (params.logWarnings)
+ params.logStream << "updateDistribution(): unexpected state" << std::endl;
+
+ // assign function values
+ for (int i = 0; i < params.lambda; ++i)
+ population[i][N] = functionValues[i] = fitnessValues[i];
+
+ // Generate index
+ sortIndex(fitnessValues, index, params.lambda);
+
+ // Test if function values are identical, escape flat fitness
+ if (fitnessValues[index[0]] ==
+ fitnessValues[index[(int)params.lambda / 2]]) {
+ sigma *= std::exp(T(0.2) + params.cs / params.damps);
+ if (params.logWarnings) {
+ params.logStream
+ << "Warning: sigma increased due to equal function values"
+ << std::endl
+ << " Reconsider the formulation of the objective function";
+ }
+ }
+
+ // update function value history
+ for (int i = (int)*(funcValueHistory - 1) - 1; i > 0; --i)
+ funcValueHistory[i] = funcValueHistory[i - 1];
+ funcValueHistory[0] = fitnessValues[index[0]];
+
+ // update xbestever
+ if (xBestEver[N] > population[index[0]][N] || gen == 1)
+ for (int i = 0; i <= N; ++i) {
+ xBestEver[i] = population[index[0]][i];
+ xBestEver[N + 1] = countevals;
+ }
+
+ const T sqrtmueffdivsigma = std::sqrt(params.mueff) / sigma;
+ // calculate xmean and rgBDz~N(0,C)
+ for (int i = 0; i < N; ++i) {
+ xold[i] = xmean[i];
+ xmean[i] = 0.;
+ for (int iNk = 0; iNk < params.mu; ++iNk)
+ xmean[i] += params.weights[iNk] * population[index[iNk]][i];
+ BDz[i] = sqrtmueffdivsigma * (xmean[i] - xold[i]);
+ }
+
+ // calculate z := D^(-1)* B^(-1)* rgBDz into rgdTmp
+ for (int i = 0; i < N; ++i) {
+ T sum;
+ if (diag)
+ sum = BDz[i];
+ else {
+ sum = 0.;
+ for (int j = 0; j < N; ++j)
+ sum += B[j][i] * BDz[j];
+ }
+ tempRandom[i] = sum / rgD[i];
+ }
+
+ // cumulation for sigma (ps) using B*z
+ const T sqrtFactor = std::sqrt(params.cs * (T(2) - params.cs));
+ const T invps = T(1) - params.cs;
+ for (int i = 0; i < N; ++i) {
+ T sum;
+ if (diag)
+ sum = tempRandom[i];
+ else {
+ sum = T(0);
+ T *Bi = B[i];
+ for (int j = 0; j < N; ++j)
+ sum += Bi[j] * tempRandom[j];
+ }
+ ps[i] = invps * ps[i] + sqrtFactor * sum;
+ }
+
+ // calculate norm(ps)^2
+ T psxps(0);
+ for (int i = 0; i < N; ++i) {
+ const T &rgpsi = ps[i];
+ psxps += rgpsi * rgpsi;
+ }
+
+ // cumulation for covariance matrix (pc) using B*D*z~N(0,C)
+ int hsig = std::sqrt(psxps) /
+ std::sqrt(T(1) - std::pow(T(1) - params.cs, T(2) * gen)) /
+ chiN <
+ T(1.4) + T(2) / (N + 1);
+ const T ccumcovinv = 1. - params.ccumcov;
+ const T hsigFactor =
+ hsig * std::sqrt(params.ccumcov * (T(2) - params.ccumcov));
+ for (int i = 0; i < N; ++i)
+ pc[i] = ccumcovinv * pc[i] + hsigFactor * BDz[i];
+
+ // update of C
+ adaptC2(hsig);
+
+ // update of sigma
+ sigma *=
+ std::exp(((std::sqrt(psxps) / chiN) - T(1)) * params.cs / params.damps);
+
+ state = UPDATED;
+ return xmean;
+ }
+
+ /**
+ * Request a scalar parameter from CMA-ES.
+ * @param key Key of the requested scalar.
+ * @return The desired value.
+ */
+ T get(GetScalar key) {
+ switch (key) {
+ case AxisRatio:
+ return maxElement(rgD, params.N) / minElement(rgD, params.N);
+ case Eval:
+ return countevals;
+ case Fitness:
+ return functionValues[index[0]];
+ case FBestEver:
+ return xBestEver[params.N];
+ case Generation:
+ return gen;
+ case MaxEval:
+ return params.stopMaxFunEvals;
+ case MaxIter:
+ return std::ceil(params.stopMaxIter);
+ case MaxAxisLength:
+ return sigma * std::sqrt(maxEW);
+ case MinAxisLength:
+ return sigma * std::sqrt(minEW);
+ case MaxStdDev:
+ return sigma * std::sqrt(maxdiagC);
+ case MinStdDev:
+ return sigma * std::sqrt(mindiagC);
+ case Dimension:
+ return params.N;
+ case SampleSize:
+ return params.lambda;
+ case Sigma:
+ return sigma;
+ default:
+ throw std::runtime_error("get(): No match found for key");
+ }
+ }
+
+ /**
+ * Request a vector parameter from CMA-ES.
+ * @param key Key of the requested vector.
+ * @return Pointer to the desired value array. Its content might be
+ * overwritten during the next call to any member functions other
+ * than get().
+ */
+ const T *getPtr(GetVector key) {
+ switch (key) {
+ case DiagC: {
+ for (int i = 0; i < params.N; ++i)
+ output[i] = C[i][i];
+ return output;
+ }
+ case DiagD:
+ return rgD;
+ case StdDev: {
+ for (int i = 0; i < params.N; ++i)
+ output[i] = sigma * std::sqrt(C[i][i]);
+ return output;
+ }
+ case XBestEver:
+ return xBestEver;
+ case XBest:
+ return population[index[0]];
+ case XMean:
+ return xmean;
+ default:
+ throw std::runtime_error("getPtr(): No match found for key");
+ }
+ }
+
+ /**
+ * Request a vector parameter from CMA-ES.
+ * @param key Key of the requested vector.
+ * @return Pointer to the desired value array with unlimited reading and
+ * writing access to its elements. The memory must be explicitly
+ * released using delete[].
+ */
+ T *getNew(GetVector key) { return getInto(key, 0); }
+
+ /**
+ * Request a vector parameter from CMA-ES.
+ * @param key Key of the requested vector.
+ * @param res Memory of size N == dimension, where the desired values are
+ * written into. For mem == NULL new memory is allocated as with
+ * calling getNew() and must be released by the user at some point.
+ */
+ T *getInto(GetVector key, T *res) {
+ T const *res0 = getPtr(key);
+ if (!res)
+ res = new T[params.N];
+ for (int i = 0; i < params.N; ++i)
+ res[i] = res0[i];
+ return res;
+ }
+
+ /**
+ * Some stopping criteria can be set in initials.par, with names starting
+ * with stop... Internal stopping criteria include a maximal condition number
+ * of about 10^15 for the covariance matrix and situations where the numerical
+ * discretisation error in x-space becomes noticeably. You can get a message
+ * that contains the matched stop criteria via getStopMessage().
+ * @return Does any stop criterion match?
+ */
+ bool testForTermination() {
+ T range, fac;
+ int iAchse, iKoo;
+ int diag = params.diagonalCov == 1 || params.diagonalCov >= gen;
+ int N = params.N;
+ std::stringstream message;
+
+ if (stopMessage != "") {
+ message << stopMessage << std::endl;
+ }
+
+ // function value reached
+ if ((gen > 1 || state > SAMPLED) && params.stStopFitness.flg &&
+ functionValues[index[0]] <= params.stStopFitness.val) {
+ message << "Fitness: function value " << functionValues[index[0]]
+ << " <= stopFitness (" << params.stStopFitness.val << ")"
+ << std::endl;
+ }
+
+ // TolFun
+ range = std::max(maxElement(funcValueHistory,
+ (int)std::min(gen, *(funcValueHistory - 1))),
+ maxElement(functionValues, params.lambda)) -
+ std::min(minElement(funcValueHistory,
+ (int)std::min(gen, *(funcValueHistory - 1))),
+ minElement(functionValues, params.lambda));
+
+ if (gen > 0 && range <= params.stopTolFun) {
+ message << "TolFun: function value differences " << range
+ << " < stopTolFun=" << params.stopTolFun << std::endl;
+ }
+
+ // TolFunHist
+ if (gen > *(funcValueHistory - 1)) {
+ range = maxElement(funcValueHistory, (int)*(funcValueHistory - 1)) -
+ minElement(funcValueHistory, (int)*(funcValueHistory - 1));
+ if (range <= params.stopTolFunHist)
+ message << "TolFunHist: history of function value changes " << range
+ << " stopTolFunHist=" << params.stopTolFunHist << std::endl;
+ }
+
+ // TolX
+ int cTemp = 0;
+ for (int i = 0; i < N; ++i) {
+ cTemp += (sigma * std::sqrt(C[i][i]) < params.stopTolX) ? 1 : 0;
+ cTemp += (sigma * pc[i] < params.stopTolX) ? 1 : 0;
+ }
+ if (cTemp == 2 * N) {
+ message << "TolX: object variable changes below " << params.stopTolX
+ << std::endl;
+ }
+
+ // TolUpX
+ for (int i = 0; i < N; ++i) {
+ if (sigma * std::sqrt(C[i][i]) >
+ params.stopTolUpXFactor * params.rgInitialStds[i]) {
+ message << "TolUpX: standard deviation increased by more than "
+ << params.stopTolUpXFactor
+ << ", larger initial standard deviation recommended."
+ << std::endl;
+ break;
+ }
+ }
+
+ // Condition of C greater than dMaxSignifKond
+ if (maxEW >= minEW * dMaxSignifKond) {
+ message << "ConditionNumber: maximal condition number " << dMaxSignifKond
+ << " reached. maxEW=" << maxEW << ",minEW=" << minEW
+ << ",maxdiagC=" << maxdiagC << ",mindiagC=" << mindiagC
+ << std::endl;
+ }
+
+ // Principal axis i has no effect on xmean, ie. x == x + 0.1* sigma* rgD[i]*
+ // B[i]
+ if (!diag) {
+ for (iAchse = 0; iAchse < N; ++iAchse) {
+ fac = 0.1 * sigma * rgD[iAchse];
+ for (iKoo = 0; iKoo < N; ++iKoo) {
+ if (xmean[iKoo] != xmean[iKoo] + fac * B[iKoo][iAchse])
+ break;
+ }
+ if (iKoo == N) {
+ message << "NoEffectAxis: standard deviation 0.1*" << (fac / 0.1)
+ << " in principal axis " << iAchse << " without effect"
+ << std::endl;
+ break;
+ }
+ }
+ }
+ // Component of xmean is not changed anymore
+ for (iKoo = 0; iKoo < N; ++iKoo) {
+ if (xmean[iKoo] ==
+ xmean[iKoo] + sigma * std::sqrt(C[iKoo][iKoo]) / T(5)) {
+ message << "NoEffectCoordinate: standard deviation 0.2*"
+ << (sigma * std::sqrt(C[iKoo][iKoo])) << " in coordinate "
+ << iKoo << " without effect" << std::endl;
+ break;
+ }
+ }
+
+ if (countevals >= params.stopMaxFunEvals) {
+ message << "MaxFunEvals: conducted function evaluations " << countevals
+ << " >= " << params.stopMaxFunEvals << std::endl;
+ }
+ if (gen >= params.stopMaxIter) {
+ message << "MaxIter: number of iterations " << gen
+ << " >= " << params.stopMaxIter << std::endl;
+ }
+
+ stopMessage = message.str();
+ return stopMessage != "";
+ }
+
+ /**
+ * A message that contains a detailed description of the matched stop
+ * criteria.
+ */
+ std::string getStopMessage() { return stopMessage; }
+
+ /**
+ * @param filename Output file name.
+ * @param key Key of type WriteKey that indicates the content that should be
+ * written. You can combine multiple keys with |.
+ */
+ void writeToFile(int key, const std::string &filename) {
+ std::ofstream file;
+ file.open(filename.c_str(), std::ios_base::app);
+
+ if (file.is_open()) {
+ if (gen > 0 || filename.substr(0, 11) != "outcmaesfit")
+ writeToStream(key, file); /* do not write fitness for gen==0 */
+ file.close();
+ } else {
+ throw std::runtime_error("writeToFile(): could not open '" + filename +
+ "'");
+ }
+ }
+
+ /**
+ * Conducts the eigendecomposition of C into B and D such that
+ * \f$C = B \cdot D \cdot D \cdot B^T\f$ and \f$B \cdot B^T = I\f$
+ * and D diagonal and positive.
+ * @param force For force == true the eigendecomposion is conducted even if
+ * eigenvector and values seem to be up to date.
+ */
+ void updateEigensystem(bool force) {
+ eigenTimings.update();
+
+ if (!force) {
+ if (eigensysIsUptodate)
+ return;
+ // return on modulo generation number
+ if (gen < genOfEigensysUpdate + params.updateCmode.modulo)
+ return;
+ // return on time percentage
+ if (params.updateCmode.maxtime < 1.00 &&
+ eigenTimings.tictoctime >
+ params.updateCmode.maxtime * eigenTimings.totaltime &&
+ eigenTimings.tictoctime > 0.0002)
+ return;
+ }
+
+ eigenTimings.tic();
+ eigen(rgD, B, tempRandom);
+ eigenTimings.toc();
+
+ // find largest and smallest eigenvalue, they are supposed to be sorted
+ // anyway
+ minEW = minElement(rgD, params.N);
+ maxEW = maxElement(rgD, params.N);
+
+ if (doCheckEigen) // needs O(n^3)! writes, in case, error message in error
+ // file
+ checkEigen(rgD, B);
+
+ for (int i = 0; i < params.N; ++i)
+ rgD[i] = std::sqrt(rgD[i]);
+
+ eigensysIsUptodate = true;
+ genOfEigensysUpdate = gen;
+ }
+
+ /**
+ * Distribution mean could be changed before samplePopulation(). This might
+ * lead to unexpected behaviour if done repeatedly.
+ * @param newxmean new mean, if it is NULL, it will be set to the current mean
+ * @return new mean
+ */
+ T const *setMean(const T *newxmean) {
+ assert(state != SAMPLED && "setMean: mean cannot be set inbetween the calls"
+ "of samplePopulation and updateDistribution");
+
+ if (newxmean && newxmean != xmean)
+ for (int i = 0; i < params.N; ++i)
+ xmean[i] = newxmean[i];
+ else
+ newxmean = xmean;
+
+ return newxmean;
+ }
+};
diff --git a/include/cma-es/parameters.h b/include/cma-es/parameters.h
new file mode 100644
index 0000000..501aa57
--- /dev/null
+++ b/include/cma-es/parameters.h
@@ -0,0 +1,391 @@
+#pragma once
+
+#include
+#include
+#include
+#include
+#include
+#include
+
+template class CMAES;
+
+/**
+ * @class Parameters
+ * Holds all parameters that can be adjusted by the user.
+ */
+template class Parameters {
+ friend class CMAES;
+
+public:
+ /* Input parameters. */
+ //! Problem dimension, must stay constant.
+ int N;
+ //! Initial search space vector.
+ T *xstart;
+ //! A typical value for a search space vector.
+ T *typicalX;
+ //! Indicates that the typical x is the initial point.
+ bool typicalXcase;
+ //! Initial standard deviations.
+ T *rgInitialStds;
+ T *rgDiffMinChange;
+
+ /* Termination parameters. */
+ //! Maximal number of objective function evaluations.
+ T stopMaxFunEvals;
+ T facmaxeval;
+ //! Maximal number of iterations.
+ T stopMaxIter;
+ //! Minimal fitness value. Only activated if flg is true.
+ struct {
+ bool flg;
+ T val;
+ } stStopFitness;
+ //! Minimal value difference.
+ T stopTolFun;
+ //! Minimal history value difference.
+ T stopTolFunHist;
+ //! Minimal search space step size.
+ T stopTolX;
+ //! Defines the maximal condition number.
+ T stopTolUpXFactor;
+
+ /* internal evolution strategy parameters */
+ /**
+ * Population size. Number of samples per iteration, at least two,
+ * generally > 4.
+ */
+ int lambda;
+ /**
+ * Number of individuals used to recompute the mean.
+ */
+ int mu;
+ T mucov;
+ /**
+ * Variance effective selection mass, should be lambda/4.
+ */
+ T mueff;
+ /**
+ * Weights used to recombinate the mean sum up to one.
+ */
+ T *weights;
+ /**
+ * Damping parameter for step-size adaption, d = inifinity or 0 means adaption
+ * is turned off, usually close to one.
+ */
+ T damps;
+ /**
+ * cs^-1 (approx. n/3) is the backward time horizon for the evolution path
+ * ps and larger than one.
+ */
+ T cs;
+ T ccumcov;
+ /**
+ * ccov^-1 (approx. n/4) is the backward time horizon for the evolution path
+ * pc and larger than one.
+ */
+ T ccov;
+ T diagonalCov;
+ struct {
+ T modulo;
+ T maxtime;
+ } updateCmode;
+ T facupdateCmode;
+
+ /**
+ * Determines the method used to initialize the weights.
+ */
+ enum Weights {
+ UNINITIALIZED_WEIGHTS,
+ LINEAR_WEIGHTS,
+ EQUAL_WEIGHTS,
+ LOG_WEIGHTS
+ } weightMode;
+
+ //! File that contains an optimization state that should be resumed.
+ std::string resumefile;
+
+ //! Set to true to activate logging warnings.
+ bool logWarnings;
+ //! Output stream that is used to log warnings, usually std::cerr.
+ std::ostream &logStream;
+
+ Parameters()
+ : N(-1), xstart(0), typicalX(0), typicalXcase(false), rgInitialStds(0),
+ rgDiffMinChange(0), stopMaxFunEvals(-1), facmaxeval(1.0),
+ stopMaxIter(-1.0), stopTolFun(1e-12), stopTolFunHist(1e-13),
+ stopTolX(0), // 1e-11*insigma would also be reasonable
+ stopTolUpXFactor(1e3), lambda(-1), mu(-1), mucov(-1), mueff(-1),
+ weights(0), damps(-1), cs(-1), ccumcov(-1), ccov(-1), facupdateCmode(1),
+ weightMode(UNINITIALIZED_WEIGHTS), resumefile(""), logWarnings(false),
+ logStream(std::cerr) {
+ stStopFitness.flg = false;
+ stStopFitness.val = -std::numeric_limits::max();
+ updateCmode.modulo = -1;
+ updateCmode.maxtime = -1;
+ }
+
+ Parameters(const Parameters ¶meters) { assign(parameters); }
+
+ ~Parameters() {
+ if (xstart)
+ delete[] xstart;
+ if (typicalX)
+ delete[] typicalX;
+ if (rgInitialStds)
+ delete[] rgInitialStds;
+ if (rgDiffMinChange)
+ delete[] rgDiffMinChange;
+ if (weights)
+ delete[] weights;
+ }
+
+ Parameters &operator=(const Parameters ¶meters) {
+ assign(parameters);
+ return *this;
+ }
+
+ /**
+ * @param dimension Dimension of the search space \f$N\f$. No default
+ * available, must be defined here or you have to set the
+ * member manually.
+ * @param inxstart Initial point in search space \f$x_0\f$, default (NULL) is
+ * \f$(0.5,\ldots,0.5)^T + N(0, initialStdDev^2) \in R^N\f$.
+ * This must be an array of size \f$N\f$.
+ * @param inrgsigma Coordinatewise initial standard deviation of the sample
+ * distribution (\f$\sigma \cdot \sqrt{C_{ii}} =
+ * initialStdDev[i]\f$). The expected initial distance
+ * between initialX and the optimum per coordinate should be
+ * roughly initialStdDev. The entries should not differ by
+ * several orders of magnitude. Default (NULL) is
+ * \f$(0.3,\ldots,0.3)^T \in R^N\f$. This must be an array of
+ * size \f$N\f$.
+ */
+ void init(int dimension = 0, const T *inxstart = 0, const T *inrgsigma = 0) {
+ if (logWarnings) {
+ if (!(xstart || inxstart || typicalX))
+ logStream << "Warning: initialX undefined. typicalX = 0.5...0.5."
+ << std::endl;
+ if (!(rgInitialStds || inrgsigma))
+ logStream << "Warning: initialStandardDeviations undefined. 0.3...0.3."
+ << std::endl;
+ }
+
+ if (dimension <= 0 && N <= 0)
+ throw std::runtime_error("Problem dimension N undefined.");
+ else if (dimension > 0)
+ N = dimension;
+
+ if (weightMode == UNINITIALIZED_WEIGHTS)
+ weightMode = LOG_WEIGHTS;
+
+ diagonalCov = 0; // default is 0, but this might change in future
+
+ if (!xstart) {
+ xstart = new T[N];
+ if (inxstart) {
+ for (int i = 0; i < N; ++i)
+ xstart[i] = inxstart[i];
+ } else if (typicalX) {
+ typicalXcase = true;
+ for (int i = 0; i < N; ++i)
+ xstart[i] = typicalX[i];
+ } else {
+ typicalXcase = true;
+ for (int i = 0; i < N; i++)
+ xstart[i] = 0.5;
+ }
+ }
+
+ if (!rgInitialStds) {
+ rgInitialStds = new T[N];
+ if (inrgsigma) {
+ for (int i = 0; i < N; ++i)
+ rgInitialStds[i] = inrgsigma[i];
+ } else {
+ for (int i = 0; i < N; ++i)
+ rgInitialStds[i] = T(0.3);
+ }
+ }
+
+ supplementDefaults();
+ }
+
+private:
+ void assign(const Parameters &p) {
+ N = p.N;
+
+ if (xstart)
+ delete[] xstart;
+ if (p.xstart) {
+ xstart = new T[N];
+ for (int i = 0; i < N; i++)
+ xstart[i] = p.xstart[i];
+ }
+
+ if (typicalX)
+ delete[] typicalX;
+ if (p.typicalX) {
+ typicalX = new T[N];
+ for (int i = 0; i < N; i++)
+ typicalX[i] = p.typicalX[i];
+ }
+
+ typicalXcase = p.typicalXcase;
+
+ if (rgInitialStds)
+ delete[] rgInitialStds;
+ if (p.rgInitialStds) {
+ rgInitialStds = new T[N];
+ for (int i = 0; i < N; i++)
+ rgInitialStds[i] = p.rgInitialStds[i];
+ }
+
+ if (rgDiffMinChange)
+ delete[] rgDiffMinChange;
+ if (p.rgDiffMinChange) {
+ rgDiffMinChange = new T[N];
+ for (int i = 0; i < N; i++)
+ rgDiffMinChange[i] = p.rgDiffMinChange[i];
+ }
+
+ stopMaxFunEvals = p.stopMaxFunEvals;
+ facmaxeval = p.facmaxeval;
+ stopMaxIter = p.stopMaxIter;
+
+ stStopFitness.flg = p.stStopFitness.flg;
+ stStopFitness.val = p.stStopFitness.val;
+
+ stopTolFun = p.stopTolFun;
+ stopTolFunHist = p.stopTolFunHist;
+ stopTolX = p.stopTolX;
+ stopTolUpXFactor = p.stopTolUpXFactor;
+
+ lambda = p.lambda;
+ mu = p.mu;
+ mucov = p.mucov;
+ mueff = p.mueff;
+
+ if (weights)
+ delete[] weights;
+ if (p.weights) {
+ weights = new T[mu];
+ for (int i = 0; i < mu; i++)
+ weights[i] = p.weights[i];
+ }
+
+ damps = p.damps;
+ cs = p.cs;
+ ccumcov = p.ccumcov;
+ ccov = p.ccov;
+ diagonalCov = p.diagonalCov;
+
+ updateCmode.modulo = p.updateCmode.modulo;
+ updateCmode.maxtime = p.updateCmode.maxtime;
+
+ facupdateCmode = p.facupdateCmode;
+
+ weightMode = p.weightMode;
+
+ resumefile = p.resumefile;
+ }
+
+ /**
+ * Supplements default parameter values.
+ */
+ void supplementDefaults() {
+ if (lambda < 2)
+ lambda = 4 + (int)(3.0 * log((double)N));
+ if (mu <= 0)
+ mu = lambda / 2;
+ if (!weights)
+ setWeights(weightMode);
+
+ if (cs > 0)
+ cs *= (mueff + 2.) / (N + mueff + 3.);
+ if (cs <= 0 || cs >= 1)
+ cs = (mueff + 2.) / (N + mueff + 3.);
+
+ if (ccumcov <= 0 || ccumcov > 1)
+ ccumcov = 4. / (N + 4);
+
+ if (mucov < 1)
+ mucov = mueff;
+ T t1 = 2. / ((N + 1.4142) * (N + 1.4142));
+ T t2 = (2. * mueff - 1.) / ((N + 2.) * (N + 2.) + mueff);
+ t2 = (t2 > 1) ? 1 : t2;
+ t2 = (1. / mucov) * t1 + (1. - 1. / mucov) * t2;
+ if (ccov >= 0)
+ ccov *= t2;
+ if (ccov < 0 || ccov > 1)
+ ccov = t2;
+
+ if (diagonalCov < 0)
+ diagonalCov = 2 + 100. * N / sqrt((double)lambda);
+
+ if (stopMaxFunEvals <= 0)
+ stopMaxFunEvals = facmaxeval * 900 * (N + 3) * (N + 3);
+ else
+ stopMaxFunEvals *= facmaxeval;
+
+ if (stopMaxIter <= 0)
+ stopMaxIter = ceil((double)(stopMaxFunEvals / lambda));
+
+ if (damps < T(0))
+ damps = T(1);
+ damps = damps *
+ (T(1) +
+ T(2) * std::max(T(0), std::sqrt((mueff - T(1)) / (N + T(1))) -
+ T(1))) *
+ (T)std::max(
+ T(0.3),
+ T(1) - // modify for short runs
+ (T)N / (T(1e-6) + std::min(stopMaxIter,
+ stopMaxFunEvals / lambda))) +
+ cs;
+
+ if (updateCmode.modulo < 0)
+ updateCmode.modulo = 1. / ccov / (double)N / 10.;
+ updateCmode.modulo *= facupdateCmode;
+ if (updateCmode.maxtime < 0)
+ updateCmode.maxtime = 0.20; // maximal 20% of CPU-time
+ }
+
+ /**
+ * Initializes the offspring weights.
+ */
+ void setWeights(Weights mode) {
+ if (weights)
+ delete[] weights;
+ weights = new T[mu];
+ switch (mode) {
+ case LINEAR_WEIGHTS:
+ for (int i = 0; i < mu; ++i)
+ weights[i] = mu - i;
+ break;
+ case EQUAL_WEIGHTS:
+ for (int i = 0; i < mu; ++i)
+ weights[i] = 1;
+ break;
+ case LOG_WEIGHTS:
+ default:
+ for (int i = 0; i < mu; ++i)
+ weights[i] = log(mu + 1.) - log(i + 1.);
+ break;
+ }
+
+ // normalize weights vector and set mueff
+ T s1 = 0, s2 = 0;
+ for (int i = 0; i < mu; ++i) {
+ s1 += weights[i];
+ s2 += weights[i] * weights[i];
+ }
+ mueff = s1 * s1 / s2;
+ for (int i = 0; i < mu; ++i)
+ weights[i] /= s1;
+
+ if (mu < 1 || mu > lambda ||
+ (mu == lambda && weights[0] == weights[mu - 1]))
+ throw std::runtime_error("setWeights(): invalid setting of mu or lambda");
+ }
+};
diff --git a/include/cma-es/random.h b/include/cma-es/random.h
new file mode 100644
index 0000000..50dcd34
--- /dev/null
+++ b/include/cma-es/random.h
@@ -0,0 +1,83 @@
+#pragma once
+
+#include
+#include
+
+/**
+ * @class Random
+ * A pseudo random number generator.
+ */
+template class Random {
+ // variables for uniform()
+ long int startseed;
+ long int aktseed;
+ long int aktrand;
+ long int rgrand[32];
+ // variables for gauss()
+ bool stored;
+ T hold;
+
+public:
+ /**
+ * @param seed use clock if 0
+ */
+ Random(long unsigned seed = 0) : hold(0.0) {
+ stored = false;
+ if (seed < 1) {
+ long int t = 100 * time(0) + clock();
+ seed = (long unsigned)(t < 0 ? -t : t);
+ }
+ start(seed);
+ }
+ /**
+ * @param seed 0 == 1
+ */
+ void start(long unsigned seed) {
+ stored = false;
+ startseed = seed;
+ if (seed < 1)
+ seed = 1;
+ aktseed = seed;
+ for (int i = 39; i >= 0; --i) {
+ long tmp = aktseed / 127773;
+ aktseed = 16807 * (aktseed - tmp * 127773) - 2836 * tmp;
+ if (aktseed < 0)
+ aktseed += 2147483647;
+ if (i < 32)
+ rgrand[i] = aktseed;
+ }
+ aktrand = rgrand[0];
+ }
+ /**
+ * @return (0,1)-normally distributed random number
+ */
+ T gauss(void) {
+ if (stored) {
+ stored = false;
+ return hold;
+ }
+ stored = true;
+ T x1, x2, rquad;
+ do {
+ x1 = 2.0 * uniform() - 1.0;
+ x2 = 2.0 * uniform() - 1.0;
+ rquad = x1 * x1 + x2 * x2;
+ } while (rquad >= 1 || rquad <= 0);
+ const T fac = std::sqrt(T(-2) * std::log(rquad) / rquad);
+ hold = fac * x1;
+ return fac * x2;
+ }
+ /**
+ * @return (0,1)-uniform distributed random number
+ */
+ T uniform(void) {
+ long tmp = aktseed / 127773;
+ aktseed = 16807 * (aktseed - tmp * 127773) - 2836 * tmp;
+ if (aktseed < 0)
+ aktseed += 2147483647;
+ tmp = aktrand / 67108865;
+ aktrand = rgrand[tmp];
+ rgrand[tmp] = aktseed;
+ return (T)aktrand / T(2.147483647e9);
+ }
+};
diff --git a/include/cma-es/timings.h b/include/cma-es/timings.h
new file mode 100644
index 0000000..a255e31
--- /dev/null
+++ b/include/cma-es/timings.h
@@ -0,0 +1,95 @@
+#pragma once
+
+#include "utils.h"
+#include
+#include
+
+/**
+ * @class Timing
+ * A class for time measurements of the eigen decomposition.
+ * Timing measures overall time and times between calls of tic and toc. For
+ * small time spans (up to 1000 seconds) CPU time via clock() is used. For large
+ * time spans the fall-back to elapsed time from time() is used.
+ * timings_update() must be called often enough to prevent the fallback.
+ */
+class Timing {
+ clock_t lastclock;
+ time_t lasttime;
+ clock_t ticclock;
+ time_t tictime;
+ short istic;
+ short isstarted;
+
+ double lastdiff;
+ double tictoczwischensumme;
+
+public:
+ double totaltime; //! zeroed by re-calling timings_start
+ double totaltotaltime;
+ double tictoctime;
+ double lasttictoctime;
+
+ Timing() {
+ totaltotaltime = 0;
+ start();
+ }
+
+ void start() {
+ totaltime = 0;
+ tictoctime = 0;
+ lasttictoctime = 0;
+ istic = 0;
+ lastclock = clock();
+ lasttime = time(NULL);
+ lastdiff = 0;
+ tictoczwischensumme = 0;
+ isstarted = 1;
+ }
+
+ /**
+ * @return time between last call of timings_*() and now
+ */
+ double update() {
+ double diffc, difft;
+ clock_t lc = lastclock; // measure CPU in 1e-6s
+ time_t lt = lasttime; // measure time in s
+
+ assert(
+ isstarted == 1 &&
+ "timings_started() must be called before using timings... functions");
+
+ lastclock =
+ clock(); // measures at most 2147 seconds, where 1s = 1e6 CLOCKS_PER_SEC
+ lasttime = time(NULL);
+ diffc = (double)(lastclock - lc) /
+ CLOCKS_PER_SEC; // is presumably in [-21??, 21??]
+ difft = difftime(lasttime, lt); // is presumably an integer
+ lastdiff = difft; // on the "save" side
+ // use diffc clock measurement if appropriate
+ if (diffc > 0 && difft < 1000)
+ lastdiff = diffc;
+ assert(lastdiff >= 0 && "BUG in time measurement");
+ totaltime += lastdiff;
+ totaltotaltime += lastdiff;
+ if (istic) {
+ tictoczwischensumme += lastdiff;
+ tictoctime += lastdiff;
+ }
+ return lastdiff;
+ }
+
+ void tic() {
+ assert(!istic && "Timingic called twice without toc");
+ update();
+ istic = 1;
+ }
+
+ double toc() {
+ assert(istic && "Timingoc called without tic");
+ update();
+ lasttictoctime = tictoczwischensumme;
+ tictoczwischensumme = 0;
+ istic = 0;
+ return lasttictoctime;
+ }
+};
diff --git a/include/cma-es/utils.h b/include/cma-es/utils.h
new file mode 100644
index 0000000..94d349b
--- /dev/null
+++ b/include/cma-es/utils.h
@@ -0,0 +1,41 @@
+/**
+ * @file utils.h
+ * Contains some utility functions.
+ */
+
+#pragma once
+
+#include
+#include
+#include
+
+template T square(T d) { return d * d; }
+
+template T maxElement(const T *rgd, int len) {
+ return *std::max_element(rgd, rgd + len);
+}
+
+template T minElement(const T *rgd, int len) {
+ return *std::min_element(rgd, rgd + len);
+}
+
+template int maxIndex(const T *rgd, int len) {
+ return std::max_element(rgd, rgd + len) - rgd;
+}
+
+template int minIndex(const T *rgd, int len) {
+ return std::min_element(rgd, rgd + len) - rgd;
+}
+
+/** sqrt(a^2 + b^2) numerically stable. */
+template T myhypot(T a, T b) {
+ const T fabsa = std::fabs(a), fabsb = std::fabs(b);
+ if (fabsa > fabsb) {
+ const T r = b / a;
+ return fabsa * std::sqrt(T(1) + r * r);
+ } else if (b != T(0)) {
+ const T r = a / b;
+ return fabsb * std::sqrt(T(1) + r * r);
+ } else
+ return T(0);
+}
diff --git a/include/lexi.h b/include/lexi.h
new file mode 100644
index 0000000..2536141
--- /dev/null
+++ b/include/lexi.h
@@ -0,0 +1,51 @@
+#include
+
+template class LexiProduct {
+ using Product = std::vector;
+
+public:
+ LexiProduct() : LexiProduct(0) {}
+ LexiProduct(size_t size) : prd(size) {}
+ LexiProduct &operator=(const Product &prd2) {
+ prd = prd2;
+ return *this;
+ }
+ LexiProduct &operator=(Product &&prd2) {
+ prd = std::move(prd2);
+ return *this;
+ }
+
+ bool operator==(const LexiProduct &lexi2) {
+ return lexicmp(*this, lexi2) == 0;
+ }
+ bool operator!=(const LexiProduct &lexi2) {
+ return lexicmp(*this, lexi2) != 0;
+ }
+ bool operator<(const LexiProduct &lexi2) {
+ return lexicmp(*this, lexi2) < 0;
+ }
+ bool operator<=(const LexiProduct &lexi2) {
+ return lexicmp(*this, lexi2) <= 0;
+ }
+ bool operator>(const LexiProduct &lexi2) {
+ return lexicmp(*this, lexi2) > 0;
+ }
+ bool operator>=(const LexiProduct &lexi2) {
+ return lexicmp(*this, lexi2) >= 0;
+ }
+
+private:
+ Product prd;
+
+ int lexicmp(const LexiProduct &lhs, const LexiProduct &rhs) {
+ const int lencmp = lhs.prd.size() - rhs.prd.size();
+ const size_t n = (lencmp < 0 ? lhs : rhs).prd.size();
+ for (size_t i = 0; i < n; ++i) {
+ const T d = lhs.prd[i] - rhs.prd[i];
+ if (d != 0) {
+ return d;
+ }
+ }
+ return lencmp;
+ }
+};
diff --git a/src/conversion.cpp b/src/conversion.cpp
index a493f2c..bbb54e8 100644
--- a/src/conversion.cpp
+++ b/src/conversion.cpp
@@ -12,9 +12,12 @@ RGB XYZtoRGB(const XYZ &xyz) {
double g = xyz.x * A21 + xyz.y * A22 + xyz.z * A23;
double b = xyz.x * A31 + xyz.y * A32 + xyz.z * A33;
- r = ((abs(r) > 0.0031308) ? sgn(r) * (1.055 * pow(abs(r), 1 / 2.4) - 0.055) : (12.92 * r));
- g = ((abs(g) > 0.0031308) ? sgn(g) * (1.055 * pow(abs(g), 1 / 2.4) - 0.055) : (12.92 * g));
- b = ((abs(b) > 0.0031308) ? sgn(b) * (1.055 * pow(abs(b), 1 / 2.4) - 0.055) : (12.92 * b));
+ r = ((abs(r) > 0.0031308) ? sgn(r) * (1.055 * pow(abs(r), 1 / 2.4) - 0.055)
+ : (12.92 * r));
+ g = ((abs(g) > 0.0031308) ? sgn(g) * (1.055 * pow(abs(g), 1 / 2.4) - 0.055)
+ : (12.92 * g));
+ b = ((abs(b) > 0.0031308) ? sgn(b) * (1.055 * pow(abs(b), 1 / 2.4) - 0.055)
+ : (12.92 * b));
return RGB{r, g, b};
}
diff --git a/test/example1.cpp b/test/example1.cpp
new file mode 100644
index 0000000..a1253c8
--- /dev/null
+++ b/test/example1.cpp
@@ -0,0 +1,81 @@
+/**
+ * @file example1.cpp
+ * Very short example source code. The purpose of the example codes is to be
+ * edited/extended.
+ */
+
+#include
+#include
+#include
+
+/**
+ * The objective (fitness) function to be minized. "cigtab" function.
+ */
+double fitfun(double const *x, int N) {
+ double sum = 1e4 * x[0] * x[0] + 1e-4 * x[1] * x[1];
+ for (int i = 2; i < N; ++i)
+ sum += x[i] * x[i];
+ return sum;
+}
+
+/**
+ * The optimization loop.
+ */
+int main(int, char **) {
+ CMAES evo;
+ double *arFunvals, *const *pop, *xfinal;
+
+ // Initialize everything
+ const int dim = 22;
+ double xstart[dim];
+ for (int i = 0; i < dim; i++)
+ xstart[i] = 0.5;
+ double stddev[dim];
+ for (int i = 0; i < dim; i++)
+ stddev[i] = 0.3;
+ Parameters parameters;
+ // TODO Adjust parameters here
+ parameters.init(dim, xstart, stddev);
+ arFunvals = evo.init(parameters);
+
+ std::cout << evo.sayHello() << std::endl;
+
+ // Iterate until stop criterion holds
+ while (!evo.testForTermination()) {
+ // Generate lambda new search points, sample population
+ pop = evo.samplePopulation(); // Do not change content of pop
+
+ /* Here you may resample each solution point pop[i] until it
+ becomes feasible, e.g. for box constraints (variable
+ boundaries). function is_feasible(...) needs to be
+ user-defined.
+ Assumptions: the feasible domain is convex, the optimum is
+ not on (or very close to) the domain boundary, initialX is
+ feasible and initialStandardDeviations are sufficiently small
+ to prevent quasi-infinite looping.
+ */
+ /* for (i = 0; i < evo.get(CMAES::PopSize); ++i)
+ while (!is_feasible(pop[i]))
+ evo.reSampleSingle(i);
+ */
+
+ // evaluate the new search points using fitfun from above
+ for (int i = 0; i < evo.get(CMAES::Lambda); ++i)
+ arFunvals[i] = fitfun(pop[i], (int)evo.get(CMAES::Dimension));
+
+ // update the search distribution used for sampleDistribution()
+ evo.updateDistribution(arFunvals);
+ }
+ std::cout << "Stop:" << std::endl << evo.getStopMessage();
+ evo.writeToFile(CMAES::WKResume,
+ "resumeevo1.dat"); // write resumable state of CMA-ES
+
+ // get best estimator for the optimum, xmean
+ xfinal =
+ evo.getNew(CMAES::XMean); // "XBestEver" might be used as well
+
+ // do something with final solution and finally release memory
+ delete[] xfinal;
+
+ return 0;
+}
diff --git a/test/example2.cpp b/test/example2.cpp
new file mode 100644
index 0000000..6ad1915
--- /dev/null
+++ b/test/example2.cpp
@@ -0,0 +1,483 @@
+/**
+ * @file example2.cpp
+ * Implements additional restarts with increasing population
+ * (Auger & Hansen 2005).
+ */
+
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+
+double **OrthogonalBasis(int DIM);
+double f_rosenbrock(double const *x);
+double f_rand(double const *x);
+double f_constant(double const *x);
+double f_kugelmin1(double const *x);
+double f_sphere(double const *x);
+double f_stepsphere(double const *x);
+double f_cigar(double const *x);
+double f_cigtab(double const *x);
+double f_tablet(double const *x);
+double f_elli(double const *x);
+double f_ellirot(double const *x);
+double f_elli100(double const *x);
+double f_ellinumtest(double const *x);
+double f_parabR(double const *x);
+double f_sharpR(double const *x);
+double f_diffpow(double const *x);
+double f_diffpowrot(double const *x);
+double f_gleichsys5(double const *x);
+
+double *optimize(double (*pFun)(double const *), int number_of_restarts,
+ double increment_factor_for_population_size);
+
+int main(int, char **) {
+ typedef double (*pfun_t)(double const *);
+ pfun_t rgpFun[99]; // array (range) of pointer to objective function
+ double incpopsize = 2;
+ double *x;
+
+ // Put together objective functions
+ rgpFun[0] = f_sphere;
+ rgpFun[1] = f_elli;
+ rgpFun[2] = f_cigar;
+ rgpFun[3] = f_cigtab;
+ rgpFun[4] = f_tablet;
+ rgpFun[5] = f_rosenbrock;
+ rgpFun[6] = f_parabR;
+ rgpFun[7] = f_sharpR;
+ rgpFun[8] = f_diffpow;
+ rgpFun[9] = f_kugelmin1;
+ rgpFun[10] = f_ellinumtest;
+ rgpFun[11] = f_elli100;
+ rgpFun[18] = f_gleichsys5;
+ rgpFun[19] = f_rand;
+ rgpFun[20] = f_constant;
+ rgpFun[21] = f_stepsphere;
+ rgpFun[22] = f_ellirot;
+ rgpFun[23] = f_diffpowrot;
+
+ int nb = 5;
+ int nbrestarts = 0;
+
+ // Optimize function
+ x = optimize(rgpFun[nb], nbrestarts, incpopsize);
+
+ // here we could utilize the solution x, and finally free memory
+ delete[] x;
+
+ return 0;
+}
+
+/**
+ * Somewhat extended interface for optimizing pFun with CMAES implementing a
+ * restart procedure with increasing population size.
+ */
+double *optimize(double (*pFun)(double const *), int nrestarts,
+ double incpopsize) {
+ CMAES evo; // the optimizer
+ double *const *pop; // sampled population
+ double *fitvals; // objective function values of sampled population
+ double fbestever = 0, *xbestever = NULL; // store best solution
+ double fmean;
+ int irun,
+ lambda = 0, // offspring population size, 0 invokes default
+ countevals = 0; // used to set for restarts
+
+ for (irun = 0; irun < nrestarts + 1; ++irun) {
+ /* Parameters can be set in two ways. Here as input parameter to evo.init()
+ and as value read from signals.par by calling evo.readSignals
+ explicitely.
+ */
+ const int dim = 22;
+ double xstart[dim];
+ for (int i = 0; i < dim; i++)
+ xstart[i] = 0.5;
+ double stddev[dim];
+ for (int i = 0; i < dim; i++)
+ stddev[i] = 0.3;
+ Parameters parameters;
+ // You can resume a previous run by specifying a file that contains the
+ // resume data:
+ // parameters.resumefile = "resumeevo2.dat";
+ parameters.logWarnings = true; // warnings will be printed on std::cerr
+ parameters.stopTolX = 1e-11;
+ parameters.updateCmode.maxtime = 1.0;
+ parameters.lambda = lambda;
+ parameters.init(dim, xstart, stddev);
+
+ fitvals = evo.init(parameters); // allocs fitvals
+ std::cout << evo.sayHello() << std::endl;
+ evo.countevals = countevals; // a hack, effects the output and termination
+
+ while (!evo.testForTermination()) {
+ // Generate population of new candidate solutions
+ pop = evo.samplePopulation(); // do not change content of pop
+
+ /* Here optionally handle constraints etc. on pop. You may
+ * call evo.reSampleSingle(i) to resample the i-th
+ * vector pop[i], see below. Do not change pop in any other
+ * way. You may also copy and modify (repair) pop[i] only
+ * for the evaluation of the fitness function and consider
+ * adding a penalty depending on the size of the
+ * modification.
+ */
+
+ // Compute fitness value for each candidate solution
+ for (int i = 0; i < evo.get(CMAES::PopSize); ++i) {
+ /* You may resample the solution i until it lies within the
+ feasible domain here, e.g. until it satisfies given
+ box constraints (variable boundaries). The function
+ is_feasible() needs to be user-defined.
+ Assumptions: the feasible domain is convex, the optimum
+ is not on (or very close to) the domain boundary,
+ initialX is feasible (or in case typicalX +-
+ 2*initialStandardDeviations is feasible) and
+ initialStandardDeviations is (are) sufficiently small to prevent
+ quasi-infinite looping.
+ */
+ /* while (!is_feasible(pop[i]))
+ evo.reSampleSingle(i);
+ */
+ fitvals[i] = (*pFun)(pop[i]);
+ }
+
+ // update search distribution
+ evo.updateDistribution(fitvals);
+
+ fflush(stdout);
+ }
+
+ lambda = (int)(incpopsize *
+ evo.get(CMAES::Lambda)); // needed for the restart
+ countevals = (int)evo.get(CMAES::Eval); // dito
+
+ // print some "final" output
+ std::cout << (int)evo.get(CMAES::Generation) << " generations, "
+ << (int)evo.get(CMAES::Eval) << " fevals ("
+ << evo.eigenTimings.totaltime
+ << " sec): f(x)=" << evo.get(CMAES::Fitness) << std::endl
+ << " (axis-ratio="
+ << evo.get(CMAES::MaxAxisLength) /
+ evo.get(CMAES::MinAxisLength)
+ << ", max/min-stddev=" << evo.get(CMAES::MaxStdDev) << "/"
+ << evo.get(CMAES::MinStdDev) << ")" << std::endl
+ << "Stop (run " << (irun + 1) << "):" << std::endl
+ << evo.getStopMessage();
+
+ // write resume data
+ evo.writeToFile(CMAES::WKResume, "resumeevo2.dat");
+
+ // keep best ever solution
+ if (irun == 0 || evo.get(CMAES::FBestEver) < fbestever) {
+ fbestever = evo.get(CMAES::FBestEver);
+ xbestever = evo.getInto(CMAES::XBestEver,
+ xbestever); // allocates memory if needed
+ }
+ // best estimator for the optimum is xmean, therefore check
+ if ((fmean = (*pFun)(evo.getPtr(CMAES::XMean))) < fbestever) {
+ fbestever = fmean;
+ xbestever = evo.getInto(CMAES::XMean, xbestever);
+ }
+
+ // abandon restarts if target fitness value was achieved or MaxFunEvals
+ // reached
+ std::string stop = evo.getStopMessage();
+ if (strncmp(stop.c_str(), "Fitness", 7) == 0 ||
+ strncmp(stop.c_str(), "MaxFunEvals", 11) == 0)
+ break;
+ if (strncmp(stop.c_str(), "Manual", 6) == 0) {
+ printf("Press RETURN to start next run\n");
+ fflush(stdout);
+ getchar();
+ }
+ }
+
+ return xbestever; // was dynamically allocated, should be deleted in the end
+}
+
+double f_rand(double const *) {
+ double d = (double)rand() / RAND_MAX;
+ while (d == 0.)
+ d = (double)rand() / RAND_MAX;
+ return d;
+}
+
+double f_constant(double const *) { return 1; }
+
+static double SQR(double d) { return d * d; }
+
+double f_stepsphere(double const *x) {
+ int i;
+ double sum = 0.;
+ int DIM = (int)(x[-1]);
+ for (i = 0; i < DIM; ++i)
+ sum += floor(x[i] * x[i]);
+ return sum;
+}
+
+double f_sphere(double const *x) {
+ int i;
+ double sum = 0.;
+ int DIM = (int)(x[-1]);
+ for (i = 0; i < DIM; ++i)
+ sum += x[i] * x[i];
+ return sum;
+}
+
+double f_cigar(double const *x) {
+ int i;
+ double sum = 0.;
+ int DIM = (int)(x[-1]);
+
+ for (i = 1; i < DIM; ++i)
+ sum += x[i] * x[i];
+ sum *= 1e6;
+ sum += x[0] * x[0];
+ return sum;
+}
+
+double f_cigtab(double const *x) {
+ int i;
+ double sum = 0.;
+ int DIM = (int)(x[-1]);
+
+ sum = x[0] * x[0] + 1e8 * x[DIM - 1] * x[DIM - 1];
+ for (i = 1; i < DIM - 1; ++i)
+ sum += 1e4 * x[i] * x[i];
+ return sum;
+}
+
+double f_tablet(double const *x) {
+ int i;
+ double sum = 0.;
+ int DIM = (int)(x[-1]);
+
+ sum = 1e6 * x[0] * x[0];
+ for (i = 1; i < DIM; ++i)
+ sum += x[i] * x[i];
+ return sum;
+}
+
+/* a hack, memory is never released */
+double **OrthogonalBasis(int DIM) {
+ static int b_dim;
+ static double **b;
+ double sp;
+ int i, j, k;
+ Random R(2);
+
+ if (b_dim != 0) { // Initialization was done
+ if (b_dim != DIM) {
+ printf("function OrthogonalBasis cannot change dimensionality in file "
+ "example2.cpp");
+ exit(0);
+ }
+ return b;
+ }
+
+ // Otherwise initialize basis b
+
+ // allocate b
+ b = (double **)calloc((unsigned)DIM, sizeof(double *));
+ if (!b) {
+ printf("calloc failed in function OrthogonalBasis in file example2.cpp");
+ exit(0);
+ }
+ for (i = 0; i < DIM; ++i) {
+ b[i] = (double *)calloc((unsigned)DIM, sizeof(double));
+ if (!b[i]) {
+ printf("calloc failed in function Orthogonalbasis in file example2.cpp");
+ exit(0);
+ }
+ }
+ b_dim = DIM;
+
+ // generate orthogonal basis
+ for (i = 0; i < DIM; ++i) {
+ // sample components gaussian
+ for (j = 0; j < DIM; ++j)
+ b[i][j] = R.gauss();
+ // substract projection of previous vectors
+ for (j = i - 1; j >= 0; --j) {
+ for (sp = 0., k = 0; k < DIM; ++k)
+ sp += b[i][k] * b[j][k]; // scalar product
+ for (k = 0; k < DIM; ++k)
+ b[i][k] -= sp * b[j][k]; // substract
+ }
+ // normalize
+ for (sp = 0., k = 0; k < DIM; ++k)
+ sp += b[i][k] * b[i][k]; // squared norm
+ for (k = 0; k < DIM; ++k)
+ b[i][k] /= sqrt(sp);
+ }
+
+ return b;
+}
+
+double f_ellirot(double const *x) {
+ int i, k;
+ double sum = 0., y;
+ int DIM = (int)(x[-1]);
+ double **B = OrthogonalBasis(DIM);
+
+ if (DIM == 1)
+ return x[0] * x[0];
+ for (i = 0; i < DIM; ++i) {
+ for (y = 0., k = 0; k < DIM; ++k)
+ y += B[i][k] * x[k];
+ sum += exp(log(1e6) * 2. * (double)(i) / (DIM - 1)) * y * y;
+ }
+ return sum;
+}
+
+double f_elli(double const *x) {
+ int i;
+ double sum = 0.;
+ int DIM = (int)(x[-1]);
+
+ if (DIM == 1)
+ return x[0] * x[0];
+ for (i = 0; i < DIM; ++i)
+ sum += exp(log(1000.) * 2. * (double)(i) / (DIM - 1)) * x[i] * x[i];
+ return sum;
+}
+
+double f_elli100(double const *x) {
+ int i;
+ double sum = 0.;
+ int DIM = (int)(x[-1]);
+
+ if (DIM == 1)
+ return x[0] * x[0];
+ for (i = 0; i < DIM; ++i)
+ sum += exp(log(100.) * 2. * (double)(i) / (DIM - 1)) * x[i] * x[i];
+ return sum;
+}
+
+double f_diffpow(double const *x) {
+ int i;
+ double sum = 0.;
+ int DIM = (int)(x[-1]);
+
+ if (DIM == 1)
+ return x[0] * x[0];
+ for (i = 0; i < DIM; ++i)
+ sum += pow(fabs(x[i]), 2. + 10 * (double)(i) / (DIM - 1));
+ return sum;
+}
+
+double f_diffpowrot(double const *x) {
+ int i, k;
+ double sum = 0., y;
+ int DIM = (int)(x[-1]);
+ double **B = OrthogonalBasis(DIM);
+
+ if (DIM == 1)
+ return x[0] * x[0];
+ for (i = 0; i < DIM; ++i) {
+ for (y = 0., k = 0; k < DIM; ++k)
+ y += B[i][k] * x[k];
+ sum += pow(fabs(y), 2. + 10 * (double)(i) / (DIM - 1));
+ }
+ return sum;
+}
+
+double f_kugelmin1(double const *x) {
+ int i;
+ double sum = 0.;
+ int DIM = (int)(x[-1]);
+
+ for (i = 1; i < DIM; ++i)
+ sum += x[i] * x[i];
+ return sum;
+}
+
+/**
+ * Rosenbrock's Function, generalized.
+ */
+double f_rosenbrock(double const *x) {
+ double qualitaet;
+ int i;
+ int DIM = (int)(x[-1]);
+ qualitaet = 0.0;
+
+ for (i = DIM - 2; i >= 0; --i)
+ qualitaet += 100. * SQR(SQR(x[i]) - x[i + 1]) + SQR(1. - x[i]);
+ return (qualitaet);
+}
+
+double f_parabR(double const *x) {
+ int i;
+ double sum = 0.;
+ int DIM = (int)(x[-1]);
+ for (i = 1; i < DIM; ++i)
+ sum += x[i] * x[i];
+ return -x[0] + 100. * sum;
+}
+
+double f_sharpR(double const *x) {
+ int i;
+ double sum = 0.;
+ int DIM = (int)(x[-1]);
+ for (i = 1; i < DIM; ++i)
+ sum += x[i] * x[i];
+ return -x[0] + 100 * sqrt(sum);
+}
+
+double f_ellinumtest(double const *x) {
+ int i;
+ double sum = 0.;
+ int DIM = (int)(x[-1]);
+ static double maxVerhaeltnis = 0.;
+ if (maxVerhaeltnis == 0.) {
+ for (maxVerhaeltnis = 1.;
+ maxVerhaeltnis < 1e99 && maxVerhaeltnis < 2. * maxVerhaeltnis;
+ maxVerhaeltnis *= 2.)
+ if (maxVerhaeltnis == maxVerhaeltnis + 1.)
+ break;
+ maxVerhaeltnis *= 10.;
+ maxVerhaeltnis = sqrt(maxVerhaeltnis);
+ }
+ if (DIM < 3)
+ return x[0] * x[0];
+ for (i = 1; i < DIM; ++i)
+ sum += exp(log(maxVerhaeltnis) * 2. * (double)(i - 1) / (DIM - 2)) * x[i] *
+ x[i];
+ return sum;
+}
+
+/**
+ * 5-dimensional system of equations (Juergen Bremer).
+ * For each row the following equation holds:
+ *
+ * c_1*x[1] + c_2*x[2] + c_3*x[3] + c_4*x[4] + c_5*x[5] + c_0 = 0
+ *
+ * This is the reason why the square of the left side is in the quality
+ * function.
+ */
+double f_gleichsys5(double const *x) {
+ double qualitaet = 0.0;
+
+ static double koeff[5][6] = {/* c_1, c_2, c_3, c_4, c_5, c_0 */
+ {4, 191, 27, 199, 21, 172},
+ {191, 10883, 1413, 5402, 684, -8622},
+ {27, 1413, 191, 1032, 118, -94},
+ {199, 5402, 1032, 29203, 2331, 78172},
+ {21, 684, 118, 2331, 199, 5648}};
+ int i, j;
+ double sum;
+
+ for (i = 0; i < 5; ++i) {
+ sum = koeff[i][5];
+ for (j = 0; j < 5; ++j) {
+ sum += koeff[i][j] * x[j];
+ }
+ qualitaet += sum * sum;
+ }
+ return qualitaet;
+}
diff --git a/test/testlexi.cpp b/test/testlexi.cpp
new file mode 100644
index 0000000..a5577c6
--- /dev/null
+++ b/test/testlexi.cpp
@@ -0,0 +1,26 @@
+#include
+#include
+#include
+
+int main() {
+ LexiProduct p1, p2, p2a, p3, p4;
+ p1 = std::vector{11, 3, 4};
+ p2 = std::vector{11, 3, 7};
+ p2a = std::vector{11, 3, 7};
+ p3 = std::vector{11, 3, 7, 1};
+ p4 = std::vector{11, 2, 7, 1};
+
+ assert(p2 == p2a);
+ assert(p1 != p2);
+ assert(p1 < p2);
+ assert(p1 <= p2);
+ assert(p2 > p1);
+ assert(p2 >= p1);
+ assert(p2 >= p2a);
+ assert(p2 <= p2a);
+ assert(p2 < p3);
+ assert(p3 > p2);
+ assert(p2 > p4);
+
+ std::cout << "testlexi: All tests passed" << std::endl;
+};
\ No newline at end of file