forked from kfriendship/Face_Recognition-Door_Lock
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path04_night.py
80 lines (75 loc) · 2.58 KB
/
04_night.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import cv2
import numpy as np
import os
import time
import RPi.GPIO as GPIO
from datetime import datetime
flg = True
lock = 11
GPIO.setmode(GPIO.BOARD)
GPIO.setup(lock, GPIO.OUT)
print('')
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('trainer.yml')
print('read train compl')
cascadePath = "../haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascadePath);
print('read haar compl')
font = cv2.FONT_HERSHEY_SIMPLEX
#iniciate id counter
id = 0
# names related to ids: example ==> Marcelo: id=1, etc
names = ['None', 'woojung', 'jooyoung','geunho']
# Initialize and start realtime video capture
cam = cv2.VideoCapture(0)
cam.set(3, 640) # set video widht
cam.set(4, 480) # set video height
# Define min window size to be recognized as a face
minW = 0.1*cam.get(3)
minH = 0.1*cam.get(4)
print('while start')
while True:
ret, img =cam.read()
img = cv2.flip(img, -1) # Flip vertically
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor = 1.3,
minNeighbors = 4,
minSize = (int(minW), int(minH)),
)
#case 1 scaleFactor 1.4 / minNeighbors 6
for(x,y,w,h) in faces:
cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0), 2)
id, confidence = recognizer.predict(gray[y:y+h,x:x+w])
# Check if confidence is less them 100 ==> "0" is perfect match
confidence =round(100 -confidence)
if (confidence > 45):
id = names[id]
confidence = " {0}%".format(confidence)
if GPIO.input(lock) == 0:
if flg:
# open_door()
flg = False
lock = 11
GPIO.setmode(GPIO.BOARD)
GPIO.setup(lock, GPIO.OUT)
GPIO.output(lock, GPIO.HIGH)
time.sleep(1)
GPIO.output(lock, GPIO.LOW)
GPIO.cleanup()
file_name = datetime.today().strftime('%Y-%m-%d %H:%M:%S')
cv2.imwrite('%s.%s.%s.jpg' % (file_name,str(id),str(confidence)),img)
else:
id = "unknown"
confidence = " {0}%".format(confidence)
cv2.putText(img, str(id), (x+5,y-5), font, 1, (255,255,255), 2)
cv2.putText(img, str(confidence), (x+5,y+h-5), font, 1, (255,255,0), 1)
cv2.imshow('camera',img)
k = cv2.waitKey(10) & 0xff # Press 'ESC' for exiting video
if k == 27 or flg == False :
break
# Do a bit of cleanup
print("\n [INFO] Exiting Program and cleanup stuff")
cam.release()
cv2.destroyAllWindows()