-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__init__.py
319 lines (195 loc) · 9.56 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import pandas as pd
from pandas.core.frame import DataFrame, Series
from tolerant_isinstance import isinstance_tolerant
import numpy as np
import numexpr
def search_in_all_columns(df, expr, dtype=None, *args, **kwargs):
allindis = []
for col in df.columns:
try:
if not dtype:
b = df[col].__array__()
else:
b = df[col].__array__().astype(dtype)
evas = numexpr.evaluate(expr, *args, **kwargs)
exa = np.array(np.where(evas)).flatten()
if len(exa) > 0:
allindis.append(exa)
except Exception as fe:
continue
if len(allindis) > 0:
return np.concatenate(allindis)
return []
def search_string_dataframe_allhits_contains(df, stri, *args, **kwargs):
return df.loc[search_for_string_series_contains(df, stri=stri, *args, **kwargs)]
def search_string_dataframe_contains(df, stri, *args, **kwargs):
return df.loc[
search_for_string_series_contains(df, stri=stri, *args, **kwargs)
].drop_duplicates()
def search_string_dataframe_allhits_equal(df, stri, *args, **kwargs):
return df.loc[search_for_string_series_equal(df, stri=stri, *args, **kwargs)]
def search_string_dataframe_equal(df, stri, *args, **kwargs):
return df.loc[
search_for_string_series_equal(df, stri=stri, *args, **kwargs)
].drop_duplicates()
def search_for_string_series_equal(df, stri, *args, **kwargs):
b = df.__array__().astype("S")
stra = stri.encode()
return numexpr.evaluate(f"(b == {stra})", *args, **kwargs)
def search_for_string_series_contains(df, stri, *args, **kwargs):
b = df.__array__().astype("S")
stra = stri.encode()
return numexpr.evaluate(f"contains(b, {stra})", *args, **kwargs)
def ne_equal_df_ind(df, expr, dtype=None, *args, **kwargs):
return search_in_all_columns(df, f"(b == {expr})", dtype=dtype, *args, **kwargs)
def ne_equal_df_ind_no_dup(df, expr, *args, **kwargs):
ini = ne_equal_df_ind(df, expr, *args, **kwargs)
return np.unique(ini)
def ne_equal_df_dup(df, expr, *args, **kwargs):
ini = ne_equal_df_ind(df, expr, *args, **kwargs)
return df.loc[ini]
def ne_equal_df_no_dup(df, expr, *args, **kwargs):
ini = ne_equal_df_ind_no_dup(df, expr, *args, **kwargs)
return df.loc[ini]
def ne_equal(df, expr, *args, **kwargs):
b = df.__array__()
return numexpr.evaluate(f"(b == {expr})", *args, **kwargs)
def ne_not_equal_df_ind(df, expr, dtype=None, *args, **kwargs):
return search_in_all_columns(df, f"(b != {expr})", dtype=dtype, *args, **kwargs)
def ne_not_equal_df_ind_no_dup(df, expr, *args, **kwargs):
ini = ne_not_equal_df_ind(df, expr, *args, **kwargs)
return np.unique(ini)
def ne_not_equal_df_dup(df, expr, *args, **kwargs):
ini = ne_not_equal_df_ind(df, expr, *args, **kwargs)
return df.loc[ini]
def ne_not_equal_df_no_dup(df, expr, *args, **kwargs):
ini = ne_not_equal_df_ind_no_dup(df, expr, *args, **kwargs)
return df.loc[ini]
def ne_not_equal(df, expr, *args, **kwargs):
b = df.__array__()
return numexpr.evaluate(f"(b != {expr})", *args, **kwargs)
def ne_greater_than_df_ind(df, expr, dtype=None, *args, **kwargs):
return search_in_all_columns(df, f"(b > {expr})", dtype=dtype, *args, **kwargs)
def ne_greater_than_df_ind_no_dup(df, expr, *args, **kwargs):
ini = ne_greater_than_df_ind(df, expr, *args, **kwargs)
return np.unique(ini)
def ne_greater_than_df_dup(df, expr, *args, **kwargs):
ini = ne_greater_than_df_ind(df, expr, *args, **kwargs)
return df.loc[ini]
def ne_greater_than_df_no_dup(df, expr, *args, **kwargs):
ini = ne_greater_than_df_ind_no_dup(df, expr, *args, **kwargs)
return df.loc[ini]
def ne_greater_than(df, expr, *args, **kwargs):
b = df.__array__()
return numexpr.evaluate(f"(b > {expr})", *args, **kwargs)
def ne_less_than_df_ind(df, expr, dtype=None, *args, **kwargs):
return search_in_all_columns(df, f"(b < {expr})", dtype=dtype, *args, **kwargs)
def ne_less_than_df_ind_no_dup(df, expr, *args, **kwargs):
ini = ne_less_than_df_ind(df, expr, *args, **kwargs)
return np.unique(ini)
def ne_less_than_df_dup(df, expr, *args, **kwargs):
ini = ne_less_than_df_ind(df, expr, *args, **kwargs)
return df.loc[ini]
def ne_less_than_df_no_dup(df, expr, *args, **kwargs):
ini = ne_less_than_df_ind_no_dup(df, expr, *args, **kwargs)
return df.loc[ini]
def ne_less_than(df, expr, *args, **kwargs):
b = df.__array__()
return numexpr.evaluate(f"(b < {expr})", *args, **kwargs)
def ne_greater_than_or_equal_to_df_ind(df, expr, dtype=None, *args, **kwargs):
return search_in_all_columns(df, f"(b >= {expr})", dtype=dtype, *args, **kwargs)
def ne_greater_than_or_equal_to_df_ind_no_dup(df, expr, *args, **kwargs):
ini = ne_greater_than_or_equal_to_df_ind(df, expr, *args, **kwargs)
return np.unique(ini)
def ne_greater_than_or_equal_to_df_dup(df, expr, *args, **kwargs):
ini = ne_greater_than_or_equal_to_df_ind(df, expr, *args, **kwargs)
return df.loc[ini]
def ne_greater_than_or_equal_to_df_no_dup(df, expr, *args, **kwargs):
ini = ne_greater_than_or_equal_to_df_ind_no_dup(df, expr, *args, **kwargs)
return df.loc[ini]
def ne_greater_than_or_equal_to(df, expr, *args, **kwargs):
b = df.__array__()
return numexpr.evaluate(f"(b >= {expr})", *args, **kwargs)
def ne_less_than_or_equal_to_df_ind(df, expr, dtype=None, *args, **kwargs):
return search_in_all_columns(df, f"(b <= {expr})", dtype=dtype, *args, **kwargs)
def ne_less_than_or_equal_to_df_ind_no_dup(df, expr, *args, **kwargs):
ini = ne_less_than_or_equal_to_df_ind(df, expr, *args, **kwargs)
return np.unique(ini)
def ne_less_than_or_equal_to_df_dup(df, expr, *args, **kwargs):
ini = ne_less_than_or_equal_to_df_ind(df, expr, *args, **kwargs)
return df.loc[ini]
def ne_less_than_or_equal_to_df_no_dup(df, expr, *args, **kwargs):
ini = ne_less_than_or_equal_to_df_ind_no_dup(df, expr, *args, **kwargs)
return df.loc[ini]
def ne_less_than_or_equal_to(df, expr, *args, **kwargs):
b = df.__array__()
return numexpr.evaluate(f"(b <= {expr})", *args, **kwargs)
def ne_query(df, expr, return_np=True, *args, **kwargs):
if isinstance_tolerant(df, (pd.DataFrame, pd.Series)):
b = df.__array__()
else:
b = df
if "local_dict" in kwargs:
for key, item in kwargs.items():
if isinstance_tolerant(item, (pd.DataFrame, pd.Series)):
kwargs[key] = kwargs[key].__array__()
kwargs["local_dict"]["b"] = b
resa=numexpr.evaluate(f"({expr})", *args, **kwargs)
if not return_np:
return pd.Series(resa,index=df.index)
return resa
def pd_add_numexpr():
DataFrame.ne_search_in_all_columns = search_in_all_columns
DataFrame.ne_search_string_allhits_contains = (
search_string_dataframe_allhits_contains
)
Series.ne_search_string_allhits_contains = search_string_dataframe_allhits_contains
DataFrame.ne_search_string_dataframe_contains = search_string_dataframe_contains
DataFrame.ne_search_string_dataframe_allhits_equal = (
search_string_dataframe_allhits_equal
)
Series.ne_search_string_dataframe_allhits_equal = (
search_string_dataframe_allhits_equal
)
DataFrame.ne_search_string_dataframe_equal = search_string_dataframe_equal
Series.ne_search_for_string_series_equal = search_for_string_series_equal
DataFrame.ne_search_for_string_contains = search_for_string_series_contains
Series.ne_search_for_string_contains = search_for_string_series_contains
DataFrame.ne_equal_df_ind = ne_equal_df_ind
DataFrame.ne_equal_df_ind_no_dup = ne_equal_df_ind_no_dup
DataFrame.ne_equal_df_dup = ne_equal_df_dup
DataFrame.ne_equal_df_no_dup = ne_equal_df_no_dup
Series.ne_equal = ne_equal
DataFrame.ne_not_equal_df_ind = ne_not_equal_df_ind
DataFrame.ne_not_equal_df_ind_no_dup = ne_not_equal_df_ind_no_dup
DataFrame.ne_not_equal_df_dup = ne_not_equal_df_dup
DataFrame.ne_not_equal_df_no_dup = ne_not_equal_df_no_dup
Series.ne_not_equal = ne_not_equal
DataFrame.ne_greater_than_df_ind = ne_greater_than_df_ind
DataFrame.ne_greater_than_df_ind_no_dup = ne_greater_than_df_ind_no_dup
DataFrame.ne_greater_than_df_dup = ne_greater_than_df_dup
DataFrame.ne_greater_than_df_no_dup = ne_greater_than_df_no_dup
Series.ne_greater_than = ne_greater_than
DataFrame.ne_less_than_df_ind = ne_less_than_df_ind
DataFrame.ne_less_than_df_ind_no_dup = ne_less_than_df_ind_no_dup
DataFrame.ne_less_than_df_dup = ne_less_than_df_dup
DataFrame.ne_less_than_df_no_dup = ne_less_than_df_no_dup
Series.ne_less_than = ne_less_than
DataFrame.ne_greater_than_or_equal_to_df_ind = ne_greater_than_or_equal_to_df_ind
DataFrame.ne_greater_than_or_equal_to_df_ind_no_dup = (
ne_greater_than_or_equal_to_df_ind_no_dup
)
DataFrame.ne_greater_than_or_equal_to_df_dup = ne_greater_than_or_equal_to_df_dup
DataFrame.ne_greater_than_or_equal_to_df_no_dup = (
ne_greater_than_or_equal_to_df_no_dup
)
Series.ne_greater_than_or_equal_to = ne_greater_than_or_equal_to
DataFrame.ne_less_than_or_equal_to_df_ind = ne_less_than_or_equal_to_df_ind
DataFrame.ne_less_than_or_equal_to_df_ind_no_dup = (
ne_less_than_or_equal_to_df_ind_no_dup
)
DataFrame.ne_less_than_or_equal_to_df_dup = ne_less_than_or_equal_to_df_dup
DataFrame.ne_less_than_or_equal_to_df_no_dup = ne_less_than_or_equal_to_df_no_dup
Series.ne_less_than_or_equal_to = ne_less_than_or_equal_to
DataFrame.ne_query = ne_query
Series.ne_query = ne_query