-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrain_completion.py
executable file
·253 lines (211 loc) · 12.1 KB
/
train_completion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Copyright (c) 2020. Hanchen Wang, [email protected]
# Ref: https://github.com/wentaoyuan/pcn/blob/master/train.py
# Ref: https://github.com/WangYueFt/dgcnn/blob/master/tensorflow/train.py
# For DGCNN Encoder, We Also Use Adam + StepLR for the Unity and Simplicity
import os, sys, time, torch, shutil, argparse, datetime, importlib, numpy as np
sys.path.append('utils')
sys.path.append('models')
from TrainLogger import TrainLogger
from LMDB_DataFlow import lmdb_dataflow
from Torch_Utility import copy_parameters
# from torch.optim.lr_scheduler import StepLR
from Visu_Utility import plot_pcd_three_views
from torch.utils.tensorboard import SummaryWriter
def parse_args():
parser = argparse.ArgumentParser('Point Cloud Completion')
''' === Training Setting === '''
parser.add_argument('--log_dir', type=str, help='log folder [default: ]')
parser.add_argument('--gpu', type=str, default='0', help='GPU [default: 0]')
parser.add_argument('--batch_size', type=int, default=32, help='batch size [default: 32]')
parser.add_argument('--epoch', type=int, default=50, help='number of epoch [default: 50]')
parser.add_argument('--lr', type=float, default=0.0001, help='learning rate [default: 1e-4]')
parser.add_argument('--lr_decay', type=float, default=0.7, help='lr decay rate [default: 0.7]')
parser.add_argument('--step_size', type=int, default=20, help='lr decay step [default: 20 epoch]')
parser.add_argument('--dataset', type=str, default='modelnet', help='dataset [default: modelnet]')
parser.add_argument('--restore', action='store_true', help='loaded from restore [default: False]')
parser.add_argument('--restore_path', type=str, help='path to saved pre-trained model [default: ]')
parser.add_argument('--steps_print', type=int, default=100, help='# steps to print [default: 100]')
parser.add_argument('--steps_visu', type=int, default=3456, help='# steps to visual [default: 3456]')
parser.add_argument('--steps_eval', type=int, default=1000, help='# steps to evaluate [default: 1e3]')
parser.add_argument('--epochs_save', type=int, default=5, help='# epochs to save [default: 5 epochs]')
''' === Model Setting === '''
parser.add_argument('--model', type=str, default='pcn_occo', help='model [pcn_occo]')
parser.add_argument('--k', type=int, default=20, help='# nearest neighbors in DGCNN [20]')
parser.add_argument('--grid_size', type=int, default=4, help='edge length of the 2D grid [4]')
parser.add_argument('--grid_scale', type=float, default=0.5, help='scale of the 2D grid [0.5]')
parser.add_argument('--num_coarse', type=int, default=1024, help='# points in coarse gt [1024]')
parser.add_argument('--emb_dims', type=int, default=1024, help='# dimension of DGCNN encoder [1024]')
parser.add_argument('--input_pts', type=int, default=1024, help='# points of occluded inputs [1024]')
parser.add_argument('--gt_pts', type=int, default=16384, help='# points of ground truth inputs [16384]')
return parser.parse_args()
def main(args):
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
''' === Set up Loggers and Load Data === '''
MyLogger = TrainLogger(args, name=args.model.upper(), subfold='completion')
os.makedirs(os.path.join(MyLogger.experiment_dir, 'plots'), exist_ok=True)
writer = SummaryWriter(os.path.join(MyLogger.experiment_dir, 'runs'))
MyLogger.logger.info('Load dataset %s' % args.dataset)
if args.dataset == 'modelnet':
lmdb_train = './data/modelnet/train.lmdb'
lmdb_valid = './data/modelnet/test.lmdb'
elif args.dataset == 'shapenet':
lmdb_train = 'data/shapenet/train.lmdb'
lmdb_valid = 'data/shapenet/valid.lmdb'
else:
raise ValueError("Dataset is not available, it should be either ModelNet or ShapeNet")
assert (args.gt_pts == args.grid_size ** 2 * args.num_coarse)
df_train, num_train = lmdb_dataflow(
lmdb_train, args.batch_size, args.input_pts, args.gt_pts, is_training=True)
df_valid, num_valid = lmdb_dataflow(
lmdb_valid, args.batch_size, args.input_pts, args.gt_pts, is_training=False)
train_gen, valid_gen = df_train.get_data(), df_valid.get_data()
total_steps = num_train // args.batch_size * args.epoch
''' === Load Model and Backup Scripts === '''
MODEL = importlib.import_module(args.model)
shutil.copy(os.path.abspath(__file__), MyLogger.log_dir)
shutil.copy('./models/%s.py' % args.model, MyLogger.log_dir)
# multiple GPUs usage
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
completer = MODEL.get_model(args=args, grid_size=args.grid_size,
grid_scale=args.grid_scale, num_coarse=args.num_coarse).to(device)
criterion = MODEL.get_loss().to(device)
completer = torch.nn.DataParallel(completer)
# nn.DataParallel has its own issues (slow, memory expensive), bearable
# some optional advanced solutions: https://zhuanlan.zhihu.com/p/145427849
print('=' * 33)
print('Using %d GPU,' % torch.cuda.device_count(), 'Indices are: %s' % args.gpu)
print('=' * 33)
''' === Restore Model from Checkpoints, If there is any === '''
if args.restore:
checkpoint = torch.load(args.restore_path)
completer = copy_parameters(completer, checkpoint, verbose=True)
MyLogger.logger.info('Use pre-trained model from %s' % args.restore_path)
MyLogger.step, MyLogger.epoch = checkpoint['step'], checkpoint['epoch']
else:
MyLogger.logger.info('No pre-trained model, start training from scratch...')
''' IMPORTANT: for completion, no weight decay in Adam, no batch norm in decoder!'''
optimizer = torch.optim.Adam(
completer.parameters(),
lr=args.lr,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=0)
# weight_decay=1e-4)
# For the sake of simplicity, we save the momentum decay in the batch norm
# scheduler = StepLR(optimizer, step_size=20, gamma=0.7) -> instead we define these manually
LEARNING_RATE_CLIP = 0.01 * args.lr
def vary2fix(inputs, npts, batch_size=args.batch_size, num_point=args.input_pts):
"""upsample/downsample varied input points into fixed length
:param inputs: input points cloud
:param npts: describe how many points of each input object
:param batch_size: training batch size
:param num_point: number of points of per occluded object
:return: fixed length of points of each object
"""
inputs_ls = np.split(inputs[0], npts.cumsum())
ret_inputs = np.zeros((1, batch_size * num_point, 3))
ret_npts = npts.copy()
for idx, obj in enumerate(inputs_ls[:-1]):
if len(obj) <= num_point:
select_idx = np.concatenate([
np.arange(len(obj)), np.random.choice(len(obj), num_point - len(obj))])
else:
select_idx = np.arange(len(obj))
np.random.shuffle(select_idx)
ret_inputs[0][idx * num_point:(idx + 1) * num_point] = obj[select_idx].copy()
ret_npts[idx] = num_point
return ret_inputs, ret_npts
def piecewise_constant(global_step, boundaries, values):
"""substitute for tf.train.piecewise_constant:
https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/piecewise_constant
global_step can be either training epoch or training step
"""
if len(boundaries) != len(values) - 1:
raise ValueError(
"The length of boundaries should be 1 less than the length of values")
if global_step <= boundaries[0]:
return values[0]
elif global_step > boundaries[-1]:
return values[-1]
else:
for low, high, v in zip(boundaries[:-1], boundaries[1:], values[1:-1]):
if (global_step > low) & (global_step <= high):
return v
total_time, train_start = 0, time.time()
for step in range(MyLogger.step + 1, total_steps + 1):
''' === Training === '''
start = time.time()
epoch = step * args.batch_size // num_train + 1
lr = max(args.lr * (args.lr_decay ** (epoch // args.step_size)), LEARNING_RATE_CLIP)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# follow the original alpha setting for ShapeNet Dataset in PCN paper:
alpha = piecewise_constant(step, [10000, 20000, 50000], [0.01, 0.1, 0.5, 1.0])
writer.add_scalar('Learning Rate', lr, step)
writer.add_scalar('Alpha', alpha, step)
ids, inputs, npts, gt = next(train_gen)
if args.dataset == 'shapenet':
inputs, _ = vary2fix(inputs, npts)
completer.train()
optimizer.zero_grad()
inputs = inputs.reshape(args.batch_size, args.input_pts, 3)
inputs, gt = torch.Tensor(inputs).transpose(2, 1).cuda(), torch.Tensor(gt).cuda()
pred_coarse, pred_fine = completer(inputs)
loss = criterion(pred_coarse, pred_fine, gt, alpha)
loss.backward()
optimizer.step()
total_time += time.time() - start
writer.add_scalar('Loss', loss, step)
if step % args.steps_print == 0:
MyLogger.logger.info('epoch %d step %d alpha %.2f loss %.8f time per step %.2f s' %
(epoch, step, alpha, loss, total_time / args.steps_print))
total_time = 0
''' === Validating === '''
if step % args.steps_eval == 0:
with torch.no_grad():
completer.eval()
MyLogger.logger.info('Testing...')
num_eval_steps, eval_loss, eval_time = num_valid // args.batch_size, 0, 0
for eval_step in range(num_eval_steps):
start = time.time()
_, inputs, npts, gt = next(valid_gen)
if args.dataset == 'shapenet':
inputs, _ = vary2fix(inputs, npts)
inputs = inputs.reshape(args.batch_size, args.input_pts, 3)
inputs, gt = torch.Tensor(inputs).transpose(2, 1).cuda(), torch.Tensor(gt).cuda()
pred_coarse, pred_fine = completer(inputs)
loss = criterion(pred_coarse, pred_fine, gt, alpha)
eval_loss += loss
eval_time += time.time() - start
MyLogger.logger.info('epoch %d step %d validation loss %.8f time per step %.2f s' %
(epoch, step, eval_loss / num_eval_steps, eval_time / num_eval_steps))
''' === Visualisation === '''
if step % args.steps_visu == 0:
all_pcds = [item.detach().cpu().numpy() for item in [
inputs.transpose(2, 1), pred_coarse, pred_fine, gt]]
for i in range(args.batch_size):
plot_path = os.path.join(MyLogger.experiment_dir, 'plots',
'epoch_%d_step_%d_%s.png' % (epoch, step, ids[i]))
pcds = [x[i] for x in all_pcds]
plot_pcd_three_views(plot_path, pcds,
['input', 'coarse output', 'fine output', 'ground truth'])
trained_epoch = epoch - 1
if (trained_epoch % args.epochs_save == 0) and (trained_epoch != 0) and \
not os.path.exists(os.path.join(MyLogger.checkpoints_dir,
'model_epoch_%d.pth' % trained_epoch)):
state = {
'step': step,
'epoch': epoch,
'model_state_dict': completer.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}
torch.save(state, os.path.join(MyLogger.checkpoints_dir,
"model_epoch_%d.pth" % trained_epoch))
MyLogger.logger.info('Model saved at %s/model_epoch_%d.pth\n'
% (MyLogger.checkpoints_dir, trained_epoch))
MyLogger.logger.info('Training Finished, Total Time: ' +
str(datetime.timedelta(seconds=time.time() - train_start)))
if __name__ == '__main__':
args = parse_args()
main(args)