-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathREDGSL.py
531 lines (448 loc) · 22 KB
/
REDGSL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import math, os
from dataclasses import dataclass
from typing import Union
import torch
import scipy
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch_sparse import SparseTensor, matmul
from torch_geometric.utils import degree, remove_self_loops
from einops import rearrange, repeat, einsum
from selective_modeling.modules.graph_selective_modeling import Mamba
BIG_CONSTANT = 1e8
def shannon_entropy(matrix):
matrix = F.softmax(matrix, dim=1)
log_matrix = torch.log2(matrix)
elementwise_product = matrix * log_matrix
entropy = -torch.sum(elementwise_product, dim=1)
# avg_entropy = torch.mean(entropy)
return entropy.squeeze()
def kl_divergence(x, y):
x_log = F.log_softmax(x, dim=1)
y = F.softmax(y, dim=1)
kl = nn.KLDivLoss(reduction='none')
out = kl(x_log, y)
out = torch.sum(out, dim=1)
return out
def create_projection_matrix(m, d, seed=0, scaling=0, struct_mode=False):
nb_full_blocks = int(m / d)
block_list = []
current_seed = seed
for _ in range(nb_full_blocks):
torch.manual_seed(current_seed)
if struct_mode:
q = create_products_of_givens_rotations(d, current_seed)
else:
unstructured_block = torch.randn((d, d))
q, _ = torch.qr(unstructured_block)
q = torch.t(q)
block_list.append(q)
current_seed += 1
remaining_rows = m - nb_full_blocks * d
if remaining_rows > 0:
torch.manual_seed(current_seed)
if struct_mode:
q = create_products_of_givens_rotations(d, current_seed)
else:
unstructured_block = torch.randn((d, d))
q, _ = torch.qr(unstructured_block)
q = torch.t(q)
block_list.append(q[0:remaining_rows])
final_matrix = torch.vstack(block_list)
current_seed += 1
torch.manual_seed(current_seed)
if scaling == 0:
multiplier = torch.norm(torch.randn((m, d)), dim=1)
elif scaling == 1:
multiplier = torch.sqrt(torch.tensor(float(d))) * torch.ones(m)
else:
raise ValueError("Scaling must be one of {0, 1}. Was %s" % scaling)
return torch.matmul(torch.diag(multiplier), final_matrix)
def create_products_of_givens_rotations(dim, seed):
nb_givens_rotations = dim * int(math.ceil(math.log(float(dim))))
q = np.eye(dim, dim)
np.random.seed(seed)
for _ in range(nb_givens_rotations):
random_angle = math.pi * np.random.uniform()
random_indices = np.random.choice(dim, 2)
index_i = min(random_indices[0], random_indices[1])
index_j = max(random_indices[0], random_indices[1])
slice_i = q[index_i]
slice_j = q[index_j]
new_slice_i = math.cos(random_angle) * slice_i + math.cos(random_angle) * slice_j
new_slice_j = -math.sin(random_angle) * slice_i + math.cos(random_angle) * slice_j
q[index_i] = new_slice_i
q[index_j] = new_slice_j
return torch.tensor(q, dtype=torch.float32)
def relu_kernel_transformation(data, is_query, projection_matrix=None, numerical_stabilizer=0.001):
del is_query
if projection_matrix is None:
return F.relu(data) + numerical_stabilizer
else:
ratio = 1.0 / torch.sqrt(
torch.tensor(projection_matrix.shape[0], torch.float32)
)
data_dash = ratio * torch.einsum("bnhd,md->bnhm", data, projection_matrix)
return F.relu(data_dash) + numerical_stabilizer
def softmax_kernel_transformation(data, is_query, projection_matrix=None, numerical_stabilizer=0.000001):
data_normalizer = 1.0 / torch.sqrt(torch.sqrt(torch.tensor(data.shape[-1], dtype=torch.float32)))
data = data_normalizer * data
ratio = 1.0 / torch.sqrt(torch.tensor(projection_matrix.shape[0], dtype=torch.float32))
data_dash = torch.einsum("bnhd,md->bnhm", data, projection_matrix)
diag_data = torch.square(data)
diag_data = torch.sum(diag_data, dim=len(data.shape) - 1)
diag_data = diag_data / 2.0
diag_data = torch.unsqueeze(diag_data, dim=len(data.shape) - 1)
last_dims_t = len(data_dash.shape) - 1
attention_dims_t = len(data_dash.shape) - 3
if is_query:
data_dash = ratio * (
torch.exp(data_dash - diag_data - torch.max(data_dash, dim=last_dims_t, keepdim=True)[
0]) + numerical_stabilizer
)
else:
data_dash = ratio * (
torch.exp(data_dash - diag_data - torch.max(torch.max(data_dash, dim=last_dims_t, keepdim=True)[0],
dim=attention_dims_t, keepdim=True)[
0]) + numerical_stabilizer
)
return data_dash
def numerator(qs, ks, vs):
kvs = torch.einsum("nbhm,nbhd->bhmd", ks, vs) # kvs refers to U_k in the paper
return torch.einsum("nbhm,bhmd->nbhd", qs, kvs)
def denominator(qs, ks):
all_ones = torch.ones([ks.shape[0]]).to(qs.device)
ks_sum = torch.einsum("nbhm,n->bhm", ks, all_ones) # ks_sum refers to O_k in the paper
return torch.einsum("nbhm,bhm->nbh", qs, ks_sum)
def numerator_gumbel(qs, ks, vs):
kvs = torch.einsum("nbhkm,nbhd->bhkmd", ks, vs) # kvs refers to U_k in the paper
return torch.einsum("nbhm,bhkmd->nbhkd", qs, kvs)
def denominator_gumbel(qs, ks):
all_ones = torch.ones([ks.shape[0]]).to(qs.device)
ks_sum = torch.einsum("nbhkm,n->bhkm", ks, all_ones) # ks_sum refers to O_k in the paper
return torch.einsum("nbhm,bhkm->nbhk", qs, ks_sum)
def kernelized_softmax(query, key, value, kernel_transformation, projection_matrix=None, edge_index=None, tau=0.25,
return_weight=True):
'''
fast computation of all-pair attentive aggregation with linear complexity
input: query/key/value [B, N, H, D]
return: updated node emb, attention weight (for computing edge loss)
B = graph number (always equal to 1 in Node Classification), N = node number, H = head number,
M = random feature dimension, D = hidden size
'''
query = query / math.sqrt(tau)
key = key / math.sqrt(tau)
query_prime = kernel_transformation(query, True, projection_matrix) # [B, N, H, M]
key_prime = kernel_transformation(key, False, projection_matrix) # [B, N, H, M]
query_prime = query_prime.permute(1, 0, 2, 3) # [N, B, H, M]
key_prime = key_prime.permute(1, 0, 2, 3) # [N, B, H, M]
value = value.permute(1, 0, 2, 3) # [N, B, H, D]
# compute updated node emb, this step requires O(N)
z_num = numerator(query_prime, key_prime, value)
z_den = denominator(query_prime, key_prime)
z_num = z_num.permute(1, 0, 2, 3) # [B, N, H, D]
z_den = z_den.permute(1, 0, 2)
z_den = torch.unsqueeze(z_den, len(z_den.shape))
z_output = z_num / z_den # [B, N, H, D]
if return_weight: # query edge prob for computing edge-level reg loss, this step requires O(E)
start, end = edge_index
query_end, key_start = query_prime[end], key_prime[start] # [E, B, H, M]
edge_attn_num = torch.einsum("ebhm,ebhm->ebh", query_end, key_start) # [E, B, H]
edge_attn_num = edge_attn_num.permute(1, 0, 2) # [B, E, H]
attn_normalizer = denominator(query_prime, key_prime) # [N, B, H]
edge_attn_dem = attn_normalizer[end] # [E, B, H]
edge_attn_dem = edge_attn_dem.permute(1, 0, 2) # [B, E, H]
A_weight = edge_attn_num / edge_attn_dem # [B, E, H]
return z_output, A_weight
else:
return z_output, 0
def kernelized_gumbel_softmax(query, key, value, kernel_transformation, projection_matrix=None, edge_index=None,
K=10, tau=0.25, return_weight=True):
'''
fast computation of all-pair attentive aggregation with linear complexity
input: query/key/value [B, N, H, D]
return: updated node emb, attention weight (for computing edge loss)
B = graph number (always equal to 1 in Node Classification), N = node number, H = head number,
M = random feature dimension, D = hidden size, K = number of Gumbel sampling
'''
query = query / math.sqrt(tau)
key = key / math.sqrt(tau)
query_prime = kernel_transformation(query, True, projection_matrix) # [B, N, H, M]
key_prime = kernel_transformation(key, False, projection_matrix) # [B, N, H, M]
query_prime = query_prime.permute(1, 0, 2, 3) # [N, B, H, M]
key_prime = key_prime.permute(1, 0, 2, 3) # [N, B, H, M]
value = value.permute(1, 0, 2, 3) # [N, B, H, D]
# compute updated node emb, this step requires O(N)
gumbels = (
-torch.empty(key_prime.shape[:-1] + (K,),
memory_format=torch.legacy_contiguous_format).exponential_().log()
).to(query.device) / tau # [N, B, H, K]
key_t_gumbel = key_prime.unsqueeze(3) * gumbels.exp().unsqueeze(4) # [N, B, H, K, M]
z_num = numerator_gumbel(query_prime, key_t_gumbel, value) # [N, B, H, K, D]
z_den = denominator_gumbel(query_prime, key_t_gumbel) # [N, B, H, K]
z_num = z_num.permute(1, 0, 2, 3, 4) # [B, N, H, K, D]
z_den = z_den.permute(1, 0, 2, 3) # [B, N, H, K]
z_den = torch.unsqueeze(z_den, len(z_den.shape))
z_output = torch.mean(z_num / z_den, dim=3) # [B, N, H, D]
if return_weight: # query edge prob for computing edge-level reg loss, this step requires O(E)
start, end = edge_index
query_end, key_start = query_prime[end], key_prime[start] # [E, B, H, M]
edge_attn_num = torch.einsum("ebhm,ebhm->ebh", query_end, key_start) # [E, B, H]
edge_attn_num = edge_attn_num.permute(1, 0, 2) # [B, E, H]
attn_normalizer = denominator(query_prime, key_prime) # [N, B, H]
edge_attn_dem = attn_normalizer[end] # [E, B, H]
edge_attn_dem = edge_attn_dem.permute(1, 0, 2) # [B, E, H]
A_weight = edge_attn_num / edge_attn_dem # [B, E, H]
return z_output, A_weight
else:
return z_output, 0
def add_conv_relational_bias(x, edge_index, b, trans='sigmoid'):
'''
compute updated result by the relational bias of input adjacency
the implementation is similar to the Graph Convolution Network with a (shared) scalar weight for each edge
'''
row, col = edge_index
d_in = degree(col, x.shape[1]).float()
d_norm_in = (1. / d_in[col]).sqrt()
d_out = degree(row, x.shape[1]).float()
d_norm_out = (1. / d_out[row]).sqrt()
conv_output = []
for i in range(x.shape[2]):
if trans == 'sigmoid':
b_i = F.sigmoid(b[i])
elif trans == 'identity':
b_i = b[i]
else:
raise NotImplementedError
value = torch.ones_like(row) * b_i * d_norm_in * d_norm_out
adj_i = SparseTensor(row=col, col=row, value=value, sparse_sizes=(x.shape[1], x.shape[1]))
conv_output.append(matmul(adj_i, x[:, :, i])) # [B, N, D]
conv_output = torch.stack(conv_output, dim=2) # [B, N, H, D]
return conv_output
class KernelizedConv(nn.Module):
'''
one layer of NodeFormer that attentive aggregates all nodes over a latent graph
return: node embeddings for next layer, edge loss at this layer
'''
def __init__(self, in_channels, out_channels, num_heads, kernel_transformation=softmax_kernel_transformation,
projection_matrix_type='a',
nb_random_features=10, use_gumbel=True, nb_gumbel_sample=10, rb_order=0, rb_trans='sigmoid',
use_edge_loss=True):
super(KernelizedConv, self).__init__()
self.Wk = nn.Linear(in_channels, out_channels * num_heads)
self.Wq = nn.Linear(in_channels, out_channels * num_heads)
self.Wv = nn.Linear(in_channels, out_channels * num_heads)
self.Wo = nn.Linear(out_channels * num_heads, out_channels)
if rb_order >= 1:
self.b = torch.nn.Parameter(torch.FloatTensor(rb_order, num_heads), requires_grad=True)
self.out_channels = out_channels
self.num_heads = num_heads
self.kernel_transformation = kernel_transformation
self.projection_matrix_type = projection_matrix_type
self.nb_random_features = nb_random_features
self.use_gumbel = use_gumbel
self.nb_gumbel_sample = nb_gumbel_sample
self.rb_order = rb_order
self.rb_trans = rb_trans
self.use_edge_loss = use_edge_loss
def reset_parameters(self):
self.Wk.reset_parameters()
self.Wq.reset_parameters()
self.Wv.reset_parameters()
self.Wo.reset_parameters()
if self.rb_order >= 1:
if self.rb_trans == 'sigmoid':
torch.nn.init.constant_(self.b, 0.1)
elif self.rb_trans == 'identity':
torch.nn.init.constant_(self.b, 1.0)
def forward(self, z, adjs, tau):
B, N = z.size(0), z.size(1)
query = self.Wq(z).reshape(-1, N, self.num_heads, self.out_channels)
key = self.Wk(z).reshape(-1, N, self.num_heads, self.out_channels)
value = self.Wv(z).reshape(-1, N, self.num_heads, self.out_channels)
if self.projection_matrix_type is None:
projection_matrix = None
else:
dim = query.shape[-1]
seed = torch.ceil(torch.abs(torch.sum(query) * BIG_CONSTANT)).to(torch.int32)
projection_matrix = create_projection_matrix(
self.nb_random_features, dim, seed=seed).to(query.device)
# compute all-pair message passing update and attn weight on input edges, requires O(N) or O(N + E)
# if self.use_gumbel and self.training: # only using Gumbel noise for training
if self.use_gumbel:
z_next, weight = kernelized_gumbel_softmax(query, key, value, self.kernel_transformation, projection_matrix,
adjs[0],
self.nb_gumbel_sample, tau, self.use_edge_loss)
else:
z_next, weight = kernelized_softmax(query, key, value, self.kernel_transformation, projection_matrix,
adjs[0],
tau, self.use_edge_loss)
# compute update by relational bias of input adjacency, requires O(E)
for i in range(self.rb_order):
z_next += add_conv_relational_bias(value, adjs[i], self.b[i], self.rb_trans)
# aggregate results of multiple heads
z_next = self.Wo(z_next.flatten(-2, -1))
if self.use_edge_loss: # compute edge regularization loss on input adjacency
row, col = adjs[0]
d_in = degree(col, query.shape[1]).float()
d_norm = 1. / d_in[col]
d_norm_ = d_norm.reshape(1, -1, 1).repeat(1, 1, weight.shape[-1])
link_loss = torch.mean(weight.log() * d_norm_)
return z_next, link_loss
else:
return z_next
class KernelizedMP(nn.Module):
'''
Kernelized message passing part
'''
def __init__(self, in_channels, hidden_channels, out_channels, num_layers=2, num_heads=4, dropout=0.0,
kernel_transformation=softmax_kernel_transformation, nb_random_features=30, use_bn=True,
use_gumbel=True,
use_residual=True, use_act=False, use_jk=False, nb_gumbel_sample=10, rb_order=0, rb_trans='sigmoid',
use_edge_loss=True):
super(KernelizedMP, self).__init__()
self.convs = nn.ModuleList()
self.fcs = nn.ModuleList()
self.fcs.append(nn.Linear(in_channels, hidden_channels))
self.bns = nn.ModuleList()
self.bns.append(nn.LayerNorm(hidden_channels))
for i in range(num_layers):
self.convs.append(
KernelizedConv(hidden_channels, hidden_channels, num_heads=num_heads,
kernel_transformation=kernel_transformation,
nb_random_features=nb_random_features, use_gumbel=use_gumbel,
nb_gumbel_sample=nb_gumbel_sample,
rb_order=rb_order, rb_trans=rb_trans, use_edge_loss=use_edge_loss))
self.bns.append(nn.LayerNorm(hidden_channels))
if use_jk:
self.fcs.append(nn.Linear(hidden_channels * num_layers + hidden_channels, out_channels))
else:
self.fcs.append(nn.Linear(hidden_channels, out_channels))
self.dropout = dropout
self.activation = F.elu
self.use_bn = use_bn
self.use_residual = use_residual
self.use_act = use_act
self.use_jk = use_jk
self.use_edge_loss = use_edge_loss
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
for bn in self.bns:
bn.reset_parameters()
for fc in self.fcs:
fc.reset_parameters()
def forward(self, x, adjs, tau=1.0):
x = x.unsqueeze(0) # [B, N, H, D], B=1 denotes number of graph
layer_ = []
link_loss_ = []
z = self.fcs[0](x)
if self.use_bn:
z = self.bns[0](z)
z = self.activation(z)
z = F.dropout(z, p=self.dropout, training=self.training)
layer_.append(z)
for i, conv in enumerate(self.convs):
if self.use_edge_loss:
z, link_loss = conv(z, adjs, tau)
link_loss_.append(link_loss)
else:
z = conv(z, adjs, tau)
if self.use_residual:
z += layer_[i]
if self.use_bn:
z = self.bns[i + 1](z)
if self.use_act:
z = self.activation(z)
z = F.dropout(z, p=self.dropout, training=self.training)
layer_.append(z)
if self.use_jk: # use jk connection for each layer
z = torch.cat(layer_, dim=-1)
x_out = self.fcs[-1](z).squeeze(0)
if self.use_edge_loss:
return x_out, link_loss_
else:
return x_out
class MergeLayer(nn.Module):
def __init__(self, input_dim1: int, input_dim2: int, hidden_dim: int, output_dim: int):
"""
Merge Layer to merge two inputs via: input_dim1 + input_dim2 -> hidden_dim -> output_dim.
:param input_dim1: int, dimension of first input
:param input_dim2: int, dimension of the second input
:param hidden_dim: int, hidden dimension
:param output_dim: int, dimension of the output
"""
super().__init__()
self.fc1 = nn.Linear(input_dim1 + input_dim2, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
self.act = nn.ReLU()
def forward(self, input_1: torch.Tensor, input_2: torch.Tensor):
"""
merge and project the inputs
:param input_1: Tensor, shape (*, input_dim1)
:param input_2: Tensor, shape (*, input_dim2)
:return:
"""
# Tensor, shape (*, input_dim1 + input_dim2)
x = torch.cat([input_1, input_2], dim=1)
# Tensor, shape (*, output_dim)
h = self.fc2(self.act(self.fc1(x)))
return h
class REDGSL(nn.Module):
def __init__(self, n_feats, hidden_channels, node_channels, mamba_features, beta2, lamda_1=0.5, num_layers=2,
num_heads=4, dropout=0.0, nb_random_features=30, use_bn=True, use_gumbel=True,
use_residual=True, use_act=False, use_jk=False, nb_gumbel_sample=10, rb_order=0, rb_trans='sigmoid',
tau=1.0):
super(REDGSL, self).__init__()
self.tau = tau
self.node_channels = node_channels
self.lamda_1 = lamda_1
self.beta2 = beta2
self.KernelizedMP = KernelizedMP(in_channels=n_feats, hidden_channels=hidden_channels,
out_channels=node_channels,
num_layers=num_layers, dropout=dropout,
num_heads=num_heads, use_bn=use_bn, nb_random_features=nb_random_features,
use_gumbel=use_gumbel, use_residual=use_residual, use_act=use_act,
use_jk=use_jk,
nb_gumbel_sample=nb_gumbel_sample, rb_order=rb_order, rb_trans=rb_trans)
self.DGSM = Mamba(d_model=mamba_features, # Model dimension d_model
d_state=16, # SSM state expansion factor
d_conv=4, # Local convolution width
expand=1, )
self.LayerNorm = nn.LayerNorm(mamba_features, eps=1e-10)
def forward(self, node_embeddings, adj_matrices, timestamp):
mp_embs = []
edge_losses = []
num_nodes = node_embeddings[0].shape[0]
selective_modeling_adjs = []
for t in range(timestamp):
# Intra- and Inter- Kernelized message passing
local_emb, loss = self.KernelizedMP(node_embeddings[t], adj_matrices[t], self.tau)
edge_losses.append(loss)
if t == 0:
total_emb = local_emb
else:
time_emb, _ = self.KernelizedMP(mp_embs[t - 1], adj_matrices[t - 1], self.tau)
total_emb = time_emb + local_emb
mp_embs.append(total_emb)
# Graph Selective Modeling adj matrices
values = torch.ones(adj_matrices[t][0].shape[1]).to(adj_matrices[t][0].device)
size = (num_nodes, num_nodes)
temp_adj = torch.sparse_coo_tensor(adj_matrices[t][0], values, size)
selective_modeling_adjs.append(temp_adj)
# Dynamic Graph Selective Modeling
z_mp = torch.stack(mp_embs)
graph_ssm_input = z_mp.mean(dim=-1, keepdim=True)
graph_ssm_input = graph_ssm_input.permute(2, 0, 1)
graph_ssm_output = self.DGSM(graph_ssm_input, selective_modeling_adjs)
graph_ssm_output = graph_ssm_output.squeeze()
graph_ssm_output = self.LayerNorm(graph_ssm_output)
# Calculate kl_loss and entropy
kl_loss = kl_divergence(graph_ssm_output, graph_ssm_input.squeeze())
entropy = shannon_entropy(graph_ssm_output)
z_seq = graph_ssm_output.unsqueeze(-1)
z_seq = z_seq.repeat_interleave(self.node_channels, dim=-1)
embs = z_mp + self.lamda_1 * z_seq
inter_loss = entropy + self.beta2 * kl_loss
return embs, edge_losses, inter_loss