forked from simon-ging/coot-videotext
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimizer.py
143 lines (132 loc) · 6.1 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import math
from typing import List
import torch
from easydict import EasyDict
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.optim.optimizer import Optimizer
def get_optimizer(cfg: EasyDict, params: List):
cfg_name = cfg.name
if cfg.name == 'adam':
optimizer = torch.optim.Adam(
params, lr=cfg.lr, weight_decay=cfg.weight_decay)
elif cfg_name == 'radam':
optimizer = RAdam(
params, lr=cfg.lr, betas=(cfg.momentum, cfg.adam_beta2),
eps=cfg.adam_eps, weight_decay=cfg.weight_decay)
else:
raise Exception(f'Unknown Optimizer {cfg.name}')
for param_group in optimizer.param_groups:
if 'initial_lr' in param_group:
raise ValueError
param_group['initial_lr'] = param_group['lr']
return optimizer
class RAdam(Optimizer):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, degenerated_to_sgd=True):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError(
"Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError(
"Invalid beta parameter at index 1: {}".format(betas[1]))
self.degenerated_to_sgd = degenerated_to_sgd
if isinstance(params, (list, tuple)) and len(
params) > 0 and isinstance(params[0], dict):
for param in params:
if 'betas' in param and (
param['betas'][0] != betas[0] or param['betas'][1] !=
betas[1]):
param['buffer'] = [[None, None, None] for _ in range(10)]
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay,
buffer=[[None, None, None] for _ in range(10)])
super(RAdam, self).__init__(params, defaults)
def __setstate__(self, state):
super(RAdam, self).__setstate__(state)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data.float()
if grad.is_sparse:
raise RuntimeError(
'RAdam does not support sparse gradients')
p_data_fp32 = p.data.float()
state = self.state[p]
if len(state) == 0:
state['step'] = 0
state['exp_avg'] = torch.zeros_like(p_data_fp32)
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
else:
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(
p_data_fp32)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
exp_avg.mul_(beta1).add_(1 - beta1, grad)
state['step'] += 1
buffered = group['buffer'][int(state['step'] % 10)]
if state['step'] == buffered[0]:
n_sma, step_size = buffered[1], buffered[2]
else:
buffered[0] = state['step']
beta2_t = beta2 ** state['step']
n_sma_max = 2 / (1 - beta2) - 1
n_sma = n_sma_max - 2 * state['step'] * beta2_t / (
1 - beta2_t)
buffered[1] = n_sma
if n_sma >= 5:
step_size = math.sqrt(
(1 - beta2_t) * (n_sma - 4) / (n_sma_max - 4) * (
n_sma - 2) / n_sma * n_sma_max / (
n_sma_max - 2)) / (
1 - beta1 ** state['step'])
elif self.degenerated_to_sgd:
step_size = 1.0 / (1 - beta1 ** state['step'])
else:
step_size = -1
buffered[2] = step_size
if n_sma >= 5:
if group['weight_decay'] != 0:
p_data_fp32.add_(-group['weight_decay'] * group['lr'],
p_data_fp32)
denom = exp_avg_sq.sqrt().add_(group['eps'])
p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg,
denom)
p.data.copy_(p_data_fp32)
elif step_size > 0:
if group['weight_decay'] != 0:
p_data_fp32.add_(-group['weight_decay'] * group['lr'],
p_data_fp32)
p_data_fp32.add_(-step_size * group['lr'], exp_avg)
p.data.copy_(p_data_fp32)
return loss
# noinspection PyAttributeOutsideInit,PyUnresolvedReferences
class ReduceLROnPlateauWarmup(ReduceLROnPlateau):
def __init__(self, optimizer: Optimizer, warmup_epochs, **kwargs):
self.warmup_epochs = warmup_epochs
super().__init__(optimizer, **kwargs)
self.base_lrs = []
for group in optimizer.param_groups:
self.base_lrs.append(group["lr"])
self.step_rop(self.mode_worse, False, None)
def step_rop(self, metrics, do_eval, epoch=None):
assert epoch is None
epoch = self.last_epoch + 1
if epoch <= self.warmup_epochs:
factor = epoch / self.warmup_epochs
self.last_epoch = epoch
for i, param_group in enumerate(self.optimizer.param_groups):
param_group['lr'] = self.base_lrs[i] * factor
elif not do_eval:
pass
else:
super().step(metrics, epoch=epoch)