forked from rosinality/stylegan2-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathnon_leaking.py
executable file
·137 lines (95 loc) · 3.88 KB
/
non_leaking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import math
import torch
from torch.nn import functional as F
def translate_mat(t_x, t_y):
batch = t_x.shape[0]
mat = torch.eye(3).unsqueeze(0).repeat(batch, 1, 1)
translate = torch.stack((t_x, t_y), 1)
mat[:, :2, 2] = translate
return mat
def rotate_mat(theta):
batch = theta.shape[0]
mat = torch.eye(3).unsqueeze(0).repeat(batch, 1, 1)
sin_t = torch.sin(theta)
cos_t = torch.cos(theta)
rot = torch.stack((cos_t, -sin_t, sin_t, cos_t), 1).view(batch, 2, 2)
mat[:, :2, :2] = rot
return mat
def scale_mat(s_x, s_y):
batch = s_x.shape[0]
mat = torch.eye(3).unsqueeze(0).repeat(batch, 1, 1)
mat[:, 0, 0] = s_x
mat[:, 1, 1] = s_y
return mat
def lognormal_sample(size, mean=0, std=1):
return torch.empty(size).log_normal_(mean=mean, std=std)
def category_sample(size, categories):
category = torch.tensor(categories)
sample = torch.randint(high=len(categories), size=(size,))
return category[sample]
def uniform_sample(size, low, high):
return torch.empty(size).uniform_(low, high)
def normal_sample(size, mean=0, std=1):
return torch.empty(size).normal_(mean, std)
def bernoulli_sample(size, p):
return torch.empty(size).bernoulli_(p)
def random_affine_apply(p, transform, prev, eye):
size = transform.shape[0]
select = bernoulli_sample(size, p).view(size, 1, 1)
select_transform = select * transform + (1 - select) * eye
return select_transform @ prev
def sample_affine(p, size, height, width):
G = torch.eye(3).unsqueeze(0).repeat(size, 1, 1)
eye = G
# flip
param = category_sample(size, (0, 1))
Gc = scale_mat(1 - 2.0 * param, torch.ones(size))
G = random_affine_apply(p, Gc, G, eye)
# print('flip', G, scale_mat(1 - 2.0 * param, torch.ones(size)), sep='\n')
# 90 rotate
param = category_sample(size, (0, 3))
Gc = rotate_mat(-math.pi / 2 * param)
G = random_affine_apply(p, Gc, G, eye)
# print('90 rotate', G, rotate_mat(-math.pi / 2 * param), sep='\n')
# integer translate
param = uniform_sample(size, -0.125, 0.125)
param_height = torch.round(param * height) / height
param_width = torch.round(param * width) / width
Gc = translate_mat(param_width, param_height)
G = random_affine_apply(p, Gc, G, eye)
# print('integer translate', G, translate_mat(param_width, param_height), sep='\n')
# isotropic scale
param = lognormal_sample(size, std=0.2 * math.log(2))
Gc = scale_mat(param, param)
G = random_affine_apply(p, Gc, G, eye)
# print('isotropic scale', G, scale_mat(param, param), sep='\n')
p_rot = 1 - math.sqrt(1 - p)
# pre-rotate
param = uniform_sample(size, -math.pi, math.pi)
Gc = rotate_mat(-param)
G = random_affine_apply(p_rot, Gc, G, eye)
# print('pre-rotate', G, rotate_mat(-param), sep='\n')
# anisotropic scale
param = lognormal_sample(size, std=0.2 * math.log(2))
Gc = scale_mat(param, 1 / param)
G = random_affine_apply(p, Gc, G, eye)
# print('anisotropic scale', G, scale_mat(param, 1 / param), sep='\n')
# post-rotate
param = uniform_sample(size, -math.pi, math.pi)
Gc = rotate_mat(-param)
G = random_affine_apply(p_rot, Gc, G, eye)
# print('post-rotate', G, rotate_mat(-param), sep='\n')
# fractional translate
param = normal_sample(size, std=0.125)
Gc = translate_mat(param, param)
G = random_affine_apply(p, Gc, G, eye)
# print('fractional translate', G, translate_mat(param, param), sep='\n')
return G
def apply_affine(img, G):
grid = F.affine_grid(
torch.inverse(G).to(img)[:, :2, :], img.shape, align_corners=False
)
img_affine = F.grid_sample(
img, grid, mode="bilinear", align_corners=False, padding_mode="reflection"
)
return img_affine