Latent Representations are generated for particle data using a Geometric Convolution based autoencoder. Latent vectors are used for feature exploration through hierarchical clustering and tracking through mean-shift.
Insatall all dependencies:
pip install -r requirements.txt
python main.py -d 'fpm' --ball --result-dir result_example
- Find the example trained model and data at example/
- Example model analysis code at "vis.ipynb"
- Get 2016 SciVis Contest data (FPM) at: https://www.uni-kl.de/sciviscontest/
- Get 2016 SciVis Contest data (cosmology) at: https://darksky.slac.stanford.edu/scivis2015/
Configure the file "vis/src/server.py"
Setting flask app path:
cd /path/to/project/root/
$Env:FLASK_APP='./vis/src/server.py'
flask run
Visit http://127.0.0.1:5000/ for the system.
Configure the file "mean_shift.py"
python mean_shift.py
Configure the file "h_search.py"
python h_search.py