-
Notifications
You must be signed in to change notification settings - Fork 106
/
Copy pathserialization.py
executable file
·94 lines (72 loc) · 2.79 KB
/
serialization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
'''
Copyright 2017 Javier Romero, Dimitrios Tzionas, Michael J Black and the Max Planck Gesellschaft. All rights reserved.
This software is provided for research purposes only.
By using this software you agree to the terms of the MANO/SMPL+H Model license here http://mano.is.tue.mpg.de/license
More information about MANO/SMPL+H is available at http://mano.is.tue.mpg.de.
For comments or questions, please email us at: [email protected]
About this file:
================
This file defines a wrapper for the loading functions of the MANO model.
Modules included:
- load_model:
loads the MANO model from a given file location (i.e. a .pkl file location),
or a dictionary object.
'''
__all__ = ['load_model', 'save_model']
import numpy as np
import pickle
import chumpy as ch
from chumpy.ch import MatVecMult
from mano.webuser.posemapper import posemap
from mano.webuser.verts import verts_core
def ready_arguments(fname_or_dict):
if not isinstance(fname_or_dict, dict):
dd = pickle.load(open(fname_or_dict, 'rb'), encoding='latin1')
else:
dd = fname_or_dict
backwards_compatibility_replacements(dd)
want_shapemodel = 'shapedirs' in dd
nposeparms = dd['kintree_table'].shape[1] * 3
if 'trans' not in dd:
dd['trans'] = np.zeros(3)
if 'pose' not in dd:
dd['pose'] = np.zeros(nposeparms)
if 'shapedirs' in dd and 'betas' not in dd:
dd['betas'] = np.zeros(dd['shapedirs'].shape[-1])
for s in [
'v_template', 'weights', 'posedirs', 'pose', 'trans', 'shapedirs',
'betas', 'J'
]:
if (s in dd) and not hasattr(dd[s], 'dterms'):
dd[s] = ch.array(dd[s])
if want_shapemodel:
dd['v_shaped'] = dd['shapedirs'].dot(dd['betas']) + dd['v_template']
v_shaped = dd['v_shaped']
J_tmpx = MatVecMult(dd['J_regressor'], v_shaped[:, 0])
J_tmpy = MatVecMult(dd['J_regressor'], v_shaped[:, 1])
J_tmpz = MatVecMult(dd['J_regressor'], v_shaped[:, 2])
dd['J'] = ch.vstack((J_tmpx, J_tmpy, J_tmpz)).T
dd['v_posed'] = v_shaped + dd['posedirs'].dot(
posemap(dd['bs_type'])(dd['pose']))
else:
dd['v_posed'] = dd['v_template'] + dd['posedirs'].dot(
posemap(dd['bs_type'])(dd['pose']))
return dd
def load_model(fname_or_dict):
dd = ready_arguments(fname_or_dict)
args = {
'pose': dd['pose'],
'v': dd['v_posed'],
'J': dd['J'],
'weights': dd['weights'],
'kintree_table': dd['kintree_table'],
'xp': ch,
'want_Jtr': True,
'bs_style': dd['bs_style']
}
result, Jtr = verts_core(**args)
result = result + dd['trans'].reshape((1, 3))
result.J_transformed = Jtr + dd['trans'].reshape((1, 3))
for k, v in dd.items():
setattr(result, k, v)
return result