-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
351 lines (299 loc) · 14.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import time
import shutil
import random
import torch.backends.cudnn as cudnn
from torchvision.datasets import ImageFolder
from utils.functions import *
from utils.image_preprocess import *
from utils.mixup import mixup
from utils.lr_schedule import adjust_learning_rate
from utils.loss import CrossEntropyLabelSmooth, CrossEntropy
from utils.get_num_list import get_num_list
from model_params_flops import *
from utils.time_change import time_change
parser = argparse.ArgumentParser(description='PyTorch ImageNet100_64*64 Training')
parser.add_argument('--data', default='./data', type=str, metavar='N',
help='root directory of dataset where directory train_data or val_data exists')
parser.add_argument('--result', default='./Results',
type=str, metavar='N', help='root directory of results')
# model
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet35',
help='model architecture: resnet35')
parser.add_argument('--num-classes', default=200, type=int, help='define the number of classes')
parser.add_argument('--resume', default='',
type=str, metavar='PATH', help='optionally resume from a checkpoint (default: none)')
parser.add_argument('--logfile', default='',
type=str, metavar='PATH', help='optionally save logger (default: none)') # wht logger
parser.add_argument('--pretrained', default=False, type=bool, help='whether pretrained is in use.') #wht
parser.add_argument('--finetune', default=False, type=bool, help='whether finetune is in use.') #wht
parser.add_argument('--pth', default='',
type=str, metavar='PATH', help='optionally pretrain or finetune from a checkpoint (default: none)') # wht
# train
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR',
help='initial learning rate')
parser.add_argument('--lr-type', default='warmup_cos', type=str, metavar='LR', #wht
help='different learning rate schedule: step warmup_cos Tcos)')
parser.add_argument('--T-max', default=20, type=int, metavar='LR', #wht
help='the T of cos(default:5)')
parser.add_argument('--crop-size', default=32, type=int, metavar='CZ', #wht
help='the size of crop(default:32)')
parser.add_argument('--loss-type', default='CrossEntropyLoss', type=str, metavar='LR',
help='different loss schedule(default:CrossEntropyLoss) or labelsmooth') #wht
parser.add_argument('--mixup', default=False, type=bool, help='whether mixup is in use.') #wht
parser.add_argument('--RandomRotate', default=False, type=bool, help='whether RandomRotate is in use.') #wht
parser.add_argument('--cutout', default=False, type=bool, help='whether cutout is in use.') #wht
parser.add_argument('--weightloss', default=False, type=bool, help='whether weightloss is in use.') #wht
parser.add_argument('--warmup-epoch', default=10, type=int, metavar='LR', #wht
help='the number of warmup epoch(default:5)')
parser.add_argument('--epochs', default=160, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=128, type=int, metavar='N',
help='mini-batch size (default: 128), used for train and validation')
# optimizer
parser.add_argument('--optimizer', default='SGD', type=str, metavar='M', help='optimization method')
# Misc
parser.add_argument('--workers', default=8,type=int, metavar='N',
help='number of data loading workers(for linux:default 8;for Windows default 0)')
parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N',
help='print frequency (default: 10)')
parser.add_argument('--save-freq', '-sp', default=10, type=int, metavar='N',
help='save checkpoint frequency (default: 10)')
parser.add_argument('--cuda', default=torch.cuda.is_available(), type=bool, help='whether cuda is in use.')#
best_prec1 = 0
def main():
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
random.seed(0)
global args, best_prec1
args = parser.parse_args()
args.start_epoch = 0
# mkdir a new folder to store the checkpoint and best model
args.result = os.path.join(args.result, args.arch + '_lr_{}'.format(args.lr))
print(args)
if not os.path.exists(args.result):
os.makedirs(args.result)
if args.logfile:
f_log = open(os.path.join(args.result, args.logfile), 'w') # wht logger
# Model building
print('=> Building model...')
modeltype = globals()[args.arch]
if args.finetune:
model = modeltype(num_classes=args.num_classes, finetune=True, pth=args.pth)
elif args.pretrained:
model = modeltype(num_classes=args.num_classes, pretrained=True, pth=args.pth)
else:
model = modeltype(num_classes=args.num_classes)
print(model)
# compute the parameters and FLOPs of model
model_params_flops(args.arch)
# define loss function (criterion)
# criterion = nn.CrossEntropyLoss()
# CrossEntropyLabelSmooth, CrossEntropy
para_dict = {}
num_class_list, num_classes = get_num_list(args.data)
para_dict["num_classes"] = len(num_classes)
para_dict['num_class_list'] = num_class_list
if args.loss_type == 'labelsmooth':
criterion = CrossEntropyLabelSmooth(para_dict)
elif args.loss_type == 'CrossEntropyLoss':
if args.weightloss:
criterion = CrossEntropy(para_dict)
else:
criterion = CrossEntropy()
else:
raise KeyError('loss type {} is not achieved'.format(args.loss_type))
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print('=> loading checkpoint "{}"'.format(args.resume))
if args.cuda:
checkpoint = torch.load(args.resume)
else:
checkpoint = torch.load(args.resume, map_location=torch.device('cpu'))
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer_load_state_dict = checkpoint['optimizer']
print("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
if args.cuda:
print('GPU mode! ')
model = nn.DataParallel(model).cuda()
criterion = criterion.cuda()
cudnn.benchmark = True
else:
print('CPU mode! Cuda is not available!')
# define optimizer
if args.optimizer == 'SGD':
optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=0.9, weight_decay=1e-4)
elif args.optimizer == 'Adam':
optimizer = torch.optim.Adam(model.parameters(), args.lr, betas=(0.9, 0.999), eps=1e-08, weight_decay=1e-4)
elif args.optimizer == 'RMSprop':
optimizer = torch.optim.RMSprop(model.parameters(), args.lr, alpha=0.9, eps=1e-08, weight_decay=1e-4)
elif args.optimizer == 'custom':
"""
You can achieve your own optimizer here
"""
pass
else:
raise KeyError('optimization method {} is not achieved')
if args.resume:
if os.path.isfile(args.resume):
optimizer.load_state_dict(optimizer_load_state_dict)
# Data loading and preprocessing
print('=> loading imagenet200 data...')
train_transforms, val_transforms = transforms_train_val(args.crop_size, args.cutout, args.RandomRotate) #wht
if args.finetune:
train_dir = os.path.join(args.data, 'train_50') # wht finetune
if not os.path.exists(train_dir):
from utils.classbalance import classbalance
classbalance(num_class=200, cp_num=50, datapath=args.data)
else:
train_dir = os.path.join(args.data, 'train')
train_dataset = ImageFolder(train_dir, transform=train_transforms)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.workers)
if args.finetune:
val_dir = os.path.join(args.data, 'val') # wht finetune
else:
val_dir = os.path.join(args.data, 'val')
val_dataset = ImageFolder(val_dir, transform=val_transforms)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.batch_size,
shuffle=False, num_workers=args.workers)
stats_ = stats(args.result, args.start_epoch)
lr_list = []
# Compute rest Time
start_epoch_time = time.time()
process = .0
total_num = args.epochs - args.start_epoch
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(args, optimizer, epoch)
print('learning rate:{}'.format(optimizer.param_groups[0]['lr']))
lr_list.append(optimizer.param_groups[0]['lr']) # wht plot_lr
plot_lr(lr_list, args.result) # wht plot_lr
# train for one epoch
trainObj, top1, top5 = train(train_loader, model, criterion, optimizer, epoch)
# evaluate on validation set
valObj, prec1, prec5 = validate(val_loader, model, criterion)
# update stats
stats_._update(trainObj, top1, top5, valObj, prec1, prec5)
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
if args.logfile:
print('epoch: {0}, prec1 = {1}, best_prec1 = {2}'.format(epoch, prec1, best_prec1), file=f_log) # wht logger
f_log.flush()
filename = []
filename.append(os.path.join(args.result, 'checkpoint.pth.tar'))
filename.append(os.path.join(args.result, 'model_best.pth.tar'))
stat = {'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer': optimizer.state_dict()}
save_checkpoint(stat, is_best, filename)
if int(epoch+1) % args.save_freq == 0:
print("=> save checkpoint_{}.pth.tar'".format(int(epoch + 1)))
save_checkpoint(stat, False,
[os.path.join(args.result, 'checkpoint_{}.pth.tar'.format(int(epoch + 1)))])
#plot curve
plot_curve(stats_, args.result, True)
data = stats_
sio.savemat(os.path.join(args.result, 'stats.mat'), {'data': data})
# Compute rest time
process = process + 1.0/total_num
use_time = time.time()-start_epoch_time
all_time = use_time / process
res_time = all_time - use_time
str_ues_time = time_change(use_time)
str_res_time = time_change(res_time)
print('*'*60)
print("Percentage of progress:%.0f%% Used time:%s Rest time:%s "%(process*100,str_ues_time,str_res_time))
print('*'*60)
if args.logfile:
f_log.close() # wht logger
def train(train_loader, model, criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.cuda :
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
if args.mixup:
input, target_a, target_b, lam = mixup(input, target)
output = model(input)
loss = lam * criterion(output, target_a) + (1 - lam) * criterion(output, target_b)
else:
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
return losses.avg, top1.avg, top5.avg
def validate(val_loader, model, criterion):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (input, target) in enumerate(val_loader):
if args.cuda:
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top1.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return losses.avg, top1.avg, top5.avg
if __name__=='__main__':
main()