-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathprocessor.rs
766 lines (646 loc) · 20.8 KB
/
processor.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
// Copyright (c) 2017 Stefan Lankes, RWTH Aachen University
// Colin Finck, RWTH Aachen University
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
#![allow(dead_code)]
use arch::x86_64::kernel::acpi;
use arch::x86_64::kernel::idt;
use arch::x86_64::kernel::irq;
use arch::x86_64::kernel::pic;
use arch::x86_64::kernel::pit;
use arch::x86_64::kernel::KERNEL_HEADER;
use core::{fmt, u32, ptr};
use core::sync::atomic::spin_loop_hint;
use environment;
use x86::cpuid::*;
use x86::controlregs::*;
use x86::msr::*;
use x86::time::*;
const IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP: u64 = 1 << 16;
const IA32_MISC_ENABLE_SPEEDSTEP_LOCK: u64 = 1 << 20;
const IA32_MISC_ENABLE_TURBO_DISABLE: u64 = 1 << 38;
// MSR EFER bits
const EFER_SCE: u64 = (1 << 0);
const EFER_LME: u64 = (1 << 8);
const EFER_LMA: u64 = (1 << 10);
const EFER_NXE: u64 = (1 << 11);
const EFER_SVME: u64 = (1 << 12);
const EFER_LMSLE: u64 = (1 << 13);
const EFER_FFXSR: u64 = (1 << 14);
const EFER_TCE: u64 = (1 << 15);
static mut CPU_FREQUENCY: CpuFrequency = CpuFrequency::new();
static mut CPU_SPEEDSTEP: CpuSpeedStep = CpuSpeedStep::new();
static mut PHYSICAL_ADDRESS_BITS: u8 = 0;
static mut LINEAR_ADDRESS_BITS: u8 = 0;
static mut MEASUREMENT_TIMER_TICKS: u64 = 0;
static mut SUPPORTS_1GIB_PAGES: bool = false;
static mut SUPPORTS_AVX: bool = false;
static mut SUPPORTS_RDRAND: bool = false;
static mut SUPPORTS_TSC_DEADLINE: bool = false;
static mut SUPPORTS_X2APIC: bool = false;
static mut SUPPORTS_XSAVE: bool = false;
static mut SUPPORTS_FSGS: bool = false;
static mut TIMESTAMP_FUNCTION: unsafe fn() -> u64 = get_timestamp_rdtsc;
#[repr(C, align(16))]
pub struct XSaveLegacyRegion {
pub fpu_control_word: u16,
pub fpu_status_word: u16,
pub fpu_tag_word: u16,
pub fpu_opcode: u16,
pub fpu_instruction_pointer: u32,
pub fpu_instruction_pointer_high_or_cs: u32,
pub fpu_data_pointer: u32,
pub fpu_data_pointer_high_or_ds: u32,
pub mxcsr: u32,
pub mxcsr_mask: u32,
pub st_space: [u8; 8*16],
pub xmm_space: [u8; 16*16],
pub padding: [u8; 96],
}
#[repr(C)]
pub struct XSaveHeader {
pub xstate_bv: u64,
pub xcomp_bv: u64,
pub reserved: [u64; 6],
}
#[repr(C)]
pub struct XSaveAVXState {
pub ymmh_space: [u8; 16*16],
}
/// XSave Area for AMD Lightweight Profiling.
/// Refer to AMD Lightweight Profiling Specification (Publication No. 43724), Figure 7-1.
#[repr(C)]
pub struct XSaveLWPState {
pub lwpcb_address: u64,
pub flags: u32,
pub buffer_head_offset: u32,
pub buffer_base: u64,
pub buffer_size: u32,
pub filters: u32,
pub saved_event_record: [u64; 4],
pub event_counter: [u32; 16],
}
#[repr(C)]
pub struct XSaveBndregs {
pub bound_registers: [u8; 4*16],
}
#[repr(C)]
pub struct XSaveBndcsr {
pub bndcfgu_register: u64,
pub bndstatus_register: u64,
}
#[repr(C, align(64))]
pub struct FPUState {
pub legacy_region: XSaveLegacyRegion,
pub header: XSaveHeader,
pub avx_state: XSaveAVXState,
pub lwp_state: XSaveLWPState,
pub bndregs: XSaveBndregs,
pub bndcsr: XSaveBndcsr,
}
impl FPUState {
pub const fn new() -> Self {
Self {
// Set FPU-related values to their default values after initialization.
// Refer to Intel Vol. 3A, Table 9-1. IA-32 and Intel 64 Processor States Following Power-up, Reset, or INIT
legacy_region: XSaveLegacyRegion {
fpu_control_word: 0x37F,
fpu_status_word: 0,
fpu_tag_word: 0xFFFF,
fpu_opcode: 0,
fpu_instruction_pointer: 0,
fpu_instruction_pointer_high_or_cs: 0,
fpu_data_pointer: 0,
fpu_data_pointer_high_or_ds: 0,
mxcsr: 0x1F80,
mxcsr_mask: 0,
st_space: [0; 8*16],
xmm_space: [0; 16*16],
padding: [0; 96],
},
header: XSaveHeader {
xstate_bv: 0,
xcomp_bv: 0,
reserved: [0; 6],
},
avx_state: XSaveAVXState {
ymmh_space: [0; 16*16],
},
lwp_state: XSaveLWPState {
lwpcb_address: 0,
flags: 0,
buffer_head_offset: 0,
buffer_base: 0,
buffer_size: 0,
filters: 0,
saved_event_record: [0; 4],
event_counter: [0; 16],
},
bndregs: XSaveBndregs {
bound_registers: [0; 4*16],
},
bndcsr: XSaveBndcsr {
bndcfgu_register: 0,
bndstatus_register: 0,
}
}
}
pub fn restore(&self) {
if supports_xsave() {
let bitmask = u32::MAX;
unsafe { asm!("xrstorq $0" :: "*m"(self as *const Self), "{eax}"(bitmask), "{edx}"(bitmask) :: "volatile"); }
} else {
unsafe { asm!("fxrstor $0" :: "*m"(self as *const Self) :: "volatile"); }
}
}
pub fn save(&mut self) {
if supports_xsave() {
let bitmask: u32 = u32::MAX;
unsafe { asm!("xsaveq $0" : "=*m"(self as *mut Self) : "{eax}"(bitmask), "{edx}"(bitmask) : "memory" : "volatile"); }
} else {
unsafe { asm!("fxsave $0; fnclex" : "=*m"(self as *mut Self) :: "memory" : "volatile"); }
}
}
pub fn restore_common(&self) {
unsafe { asm!("fxrstor $0" :: "*m"(self as *const Self) :: "volatile"); }
}
}
enum CpuFrequencySources {
Invalid,
CommandLine,
CpuIdBrandString,
Measurement,
Hypervisor,
}
impl fmt::Display for CpuFrequencySources {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
&CpuFrequencySources::CommandLine => write!(f, "Command Line"),
&CpuFrequencySources::CpuIdBrandString => write!(f, "CPUID Brand String"),
&CpuFrequencySources::Measurement => write!(f, "Measurement"),
&CpuFrequencySources::Hypervisor => write!(f, "Hypervisor"),
_ => panic!("Attempted to print an invalid CPU Frequency Source"),
}
}
}
struct CpuFrequency {
mhz: u16,
source: CpuFrequencySources,
}
impl CpuFrequency {
const fn new() -> Self {
CpuFrequency { mhz: 0, source: CpuFrequencySources::Invalid }
}
unsafe fn detect_from_cmdline(&mut self) -> Result<(), ()> {
let mhz = environment::get_command_line_cpu_frequency();
if mhz > 0 {
self.mhz = mhz;
self.source = CpuFrequencySources::CommandLine;
Ok(())
} else {
Err(())
}
}
unsafe fn detect_from_cpuid_brand_string(&mut self, cpuid: &CpuId) -> Result<(), ()> {
let extended_function_info = cpuid.get_extended_function_info().expect("CPUID Extended Function Info not available!");
let brand_string = extended_function_info.processor_brand_string().expect("CPUID Brand String not available!");
let ghz_find = brand_string.find("GHz");
if ghz_find.is_some() {
let index = ghz_find.unwrap() - 4;
let thousand_char = brand_string.chars().nth(index).unwrap();
let decimal_char = brand_string.chars().nth(index + 1).unwrap();
let hundred_char = brand_string.chars().nth(index + 2).unwrap();
let ten_char = brand_string.chars().nth(index + 3).unwrap();
if let (Some(thousand), '.', Some(hundred), Some(ten)) = (thousand_char.to_digit(10), decimal_char, hundred_char.to_digit(10), ten_char.to_digit(10)) {
self.mhz = (thousand * 1000 + hundred * 100 + ten * 10) as u16;
self.source = CpuFrequencySources::CpuIdBrandString;
return Ok(());
}
}
Err(())
}
unsafe fn detect_from_hypervisor(&mut self) -> Result<(), ()> {
let cpu_freq = ptr::read_volatile(&KERNEL_HEADER.cpu_freq);
if cpu_freq > 0 {
self.mhz = cpu_freq as u16;
self.source = CpuFrequencySources::Hypervisor;
return Ok(());
}
Err(())
}
extern "x86-interrupt" fn measure_frequency_timer_handler(_stack_frame: &mut irq::ExceptionStackFrame) {
unsafe { MEASUREMENT_TIMER_TICKS += 1; }
pic::eoi(pit::PIT_INTERRUPT_NUMBER);
}
fn measure_frequency(&mut self) -> Result<(), ()> {
// The PIC is not initialized for uhyve, so we cannot measure anything.
if environment::is_uhyve() {
return Err(());
}
// Measure the CPU frequency by counting 3 ticks of a 100Hz timer.
let tick_count = 3;
let measurement_frequency = 100;
// Use the Programmable Interval Timer (PIT) for this measurement, which is the only
// system timer with a known constant frequency.
idt::set_gate(pit::PIT_INTERRUPT_NUMBER, Self::measure_frequency_timer_handler as usize, 0);
pit::init(measurement_frequency);
// Determine the current timer tick.
// We are probably loading this value in the middle of a time slice.
let first_tick = unsafe { MEASUREMENT_TIMER_TICKS };
// Wait until the tick count changes.
// As soon as it has done, we are at the start of a new time slice.
let start_tick = loop {
let tick = unsafe { MEASUREMENT_TIMER_TICKS };
if tick != first_tick {
break tick;
}
spin_loop_hint();
};
// Count the number of CPU cycles during 3 timer ticks.
let start = get_timestamp();
loop {
let tick = unsafe { MEASUREMENT_TIMER_TICKS };
if tick - start_tick >= tick_count {
break;
}
spin_loop_hint();
}
let end = get_timestamp();
// Deinitialize the PIT again.
// Now we can calculate our CPU frequency and implement a constant frequency tick counter
// using RDTSC timestamps.
pit::deinit();
// Calculate the CPU frequency out of this measurement.
let cycle_count = end - start;
self.mhz = (measurement_frequency * cycle_count / (1_000_000 * tick_count)) as u16;
self.source = CpuFrequencySources::Measurement;
Ok(())
}
unsafe fn detect(&mut self) {
let cpuid = CpuId::new();
self.detect_from_hypervisor()
.or_else(|_e| self.detect_from_cmdline())
.or_else(|_e| self.detect_from_cpuid_brand_string(&cpuid))
.or_else(|_e| self.measure_frequency())
.expect("Could not determine the processor frequency");
}
fn get(&self) -> u16 {
self.mhz
}
}
impl fmt::Display for CpuFrequency {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{} MHz (from {})", self.mhz, self.source)
}
}
struct CpuFeaturePrinter {
feature_info: FeatureInfo,
extended_feature_info: ExtendedFeatures,
extended_function_info: ExtendedFunctionInfo,
}
impl CpuFeaturePrinter {
fn new(cpuid: &CpuId) -> Self {
CpuFeaturePrinter {
feature_info: cpuid.get_feature_info().expect("CPUID Feature Info not available!"),
extended_feature_info: cpuid.get_extended_feature_info().expect("CPUID Extended Feature Info not available!"),
extended_function_info: cpuid.get_extended_function_info().expect("CPUID Extended Function Info not available!"),
}
}
}
impl fmt::Display for CpuFeaturePrinter {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.feature_info.has_mmx() { write!(f, "MMX ")?; }
if self.feature_info.has_sse() { write!(f, "SSE ")?; }
if self.feature_info.has_sse2() { write!(f, "SSE2 ")?; }
if self.feature_info.has_sse3() { write!(f, "SSE3 ")?; }
if self.feature_info.has_ssse3() { write!(f, "SSSE3 ")?; }
if self.feature_info.has_sse41() { write!(f, "SSE4.1 ")?; }
if self.feature_info.has_sse42() { write!(f, "SSE4.2 ")?; }
if self.feature_info.has_avx() { write!(f, "AVX ")?; }
if self.feature_info.has_eist() { write!(f, "EIST ")?; }
if self.feature_info.has_aesni() { write!(f, "AESNI ")?; }
if self.feature_info.has_rdrand() { write!(f, "RDRAND ")?; }
if self.feature_info.has_fma() { write!(f, "FMA ")?; }
if self.feature_info.has_movbe() { write!(f, "MOVBE ")?; }
if self.feature_info.has_mce() { write!(f, "MCE ")?; }
if self.feature_info.has_fxsave_fxstor() { write!(f, "FXSR ")?; }
if self.feature_info.has_xsave() { write!(f, "XSAVE ")?; }
if self.feature_info.has_vmx() { write!(f, "VMX ")?; }
if self.extended_function_info.has_rdtscp() { write!(f, "RDTSCP ")?; }
if self.feature_info.has_monitor_mwait() { write!(f, "MWAIT ")?; }
if self.feature_info.has_clflush() { write!(f, "CLFLUSH ")?; }
if self.feature_info.has_dca() { write!(f, "DCA ")?; }
if self.feature_info.has_tsc_deadline() { write!(f, "TSC-DEADLINE ")?; }
if self.extended_feature_info.has_avx2() { write!(f, "AVX2 ")?; }
if self.extended_feature_info.has_bmi1() { write!(f, "BMI1 ")?; }
if self.extended_feature_info.has_bmi2() { write!(f, "BMI2 ")?; }
if self.extended_feature_info.has_rtm() { write!(f, "RTM ")?; }
if self.extended_feature_info.has_hle() { write!(f, "HLE ")?; }
if self.extended_feature_info.has_mpx() { write!(f, "MPX ")?; }
if self.extended_feature_info.has_fsgsbase() { write!(f, "FSGSBASE ")?; }
Ok(())
}
}
struct CpuSpeedStep {
eist_available: bool,
eist_enabled: bool,
eist_locked: bool,
energy_bias_preference: bool,
max_pstate: u8,
is_turbo_pstate: bool,
}
impl CpuSpeedStep {
const fn new() -> Self {
CpuSpeedStep {
eist_available: false,
eist_enabled: false,
eist_locked: false,
energy_bias_preference: false,
max_pstate: 0,
is_turbo_pstate: false,
}
}
fn detect_features(&mut self, cpuid: &CpuId) {
let feature_info = cpuid.get_feature_info().expect("CPUID Feature Info not available!");
self.eist_available = feature_info.has_eist();
if !self.eist_available {
return;
}
let misc = unsafe { rdmsr(IA32_MISC_ENABLE) };
self.eist_enabled = (misc & IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP) > 0;
self.eist_locked = (misc & IA32_MISC_ENABLE_SPEEDSTEP_LOCK) > 0;
if !self.eist_enabled || self.eist_locked {
return;
}
self.max_pstate = (unsafe { rdmsr(MSR_PLATFORM_INFO) } >> 8) as u8;
if (misc & IA32_MISC_ENABLE_TURBO_DISABLE) == 0 {
let turbo_pstate = unsafe { rdmsr(MSR_TURBO_RATIO_LIMIT) } as u8;
if turbo_pstate > self.max_pstate {
self.max_pstate = turbo_pstate;
self.is_turbo_pstate = true;
}
}
if let Some(thermal_power_info) = cpuid.get_thermal_power_info() {
self.energy_bias_preference = thermal_power_info.has_energy_bias_pref();
}
}
fn configure(&self) {
if !self.eist_available || !self.eist_enabled || self.eist_locked {
return;
}
if self.energy_bias_preference {
unsafe { wrmsr(IA32_ENERGY_PERF_BIAS, 0); }
}
let mut perf_ctl_mask = (self.max_pstate as u64) << 8;
if self.is_turbo_pstate {
perf_ctl_mask |= 1 << 32;
}
unsafe { wrmsr(IA32_PERF_CTL, perf_ctl_mask); }
}
}
impl fmt::Display for CpuSpeedStep {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.eist_available {
write!(f, "Available, ")?;
if !self.eist_enabled {
write!(f, "but disabled")?;
} else if self.eist_locked {
write!(f, "but locked")?;
} else {
write!(f, "enabled with maximum P-State {}", self.max_pstate)?;
if self.is_turbo_pstate {
write!(f, " (Turbo Mode)")?;
}
if self.energy_bias_preference {
write!(f, ", disabled Performance/Energy Bias")?;
}
}
} else {
write!(f, "Not Available")?;
}
Ok(())
}
}
pub fn detect_features() {
// Detect CPU features
let cpuid = CpuId::new();
let feature_info = cpuid.get_feature_info().expect("CPUID Feature Info not available!");
let extended_feature_info = cpuid.get_extended_feature_info().expect("CPUID Extended Feature Info not available!");
let extended_function_info = cpuid.get_extended_function_info().expect("CPUID Extended Function Info not available!");
unsafe {
PHYSICAL_ADDRESS_BITS = extended_function_info.physical_address_bits().expect("CPUID Physical Address Bits not available!");
LINEAR_ADDRESS_BITS = extended_function_info.linear_address_bits().expect("CPUID Linear Address Bits not available!");
SUPPORTS_1GIB_PAGES = extended_function_info.has_1gib_pages();
SUPPORTS_AVX = feature_info.has_avx();
SUPPORTS_RDRAND = feature_info.has_rdrand();
SUPPORTS_TSC_DEADLINE = feature_info.has_tsc_deadline();
SUPPORTS_X2APIC = feature_info.has_x2apic();
SUPPORTS_XSAVE = feature_info.has_xsave();
SUPPORTS_FSGS = extended_feature_info.has_fsgsbase();
if extended_function_info.has_rdtscp() {
TIMESTAMP_FUNCTION = get_timestamp_rdtscp;
}
CPU_SPEEDSTEP.detect_features(&cpuid);
}
}
pub fn configure() {
// setup MSR EFER
unsafe {
wrmsr(IA32_EFER, rdmsr(IA32_EFER) | EFER_LMA | EFER_SCE | EFER_NXE);
}
//
// CR0 CONFIGURATION
//
let mut cr0 = unsafe { cr0() };
// Enable the FPU.
cr0.insert(Cr0::CR0_MONITOR_COPROCESSOR | Cr0::CR0_NUMERIC_ERROR);
cr0.remove(Cr0::CR0_EMULATE_COPROCESSOR);
// Call the IRQ7 handler on the first FPU access.
cr0.insert(Cr0::CR0_TASK_SWITCHED);
// Prevent writes to read-only pages in Ring 0.
cr0.insert(Cr0::CR0_WRITE_PROTECT);
// Enable caching.
cr0.remove(Cr0::CR0_CACHE_DISABLE | Cr0::CR0_NOT_WRITE_THROUGH);
unsafe { cr0_write(cr0); }
//
// CR4 CONFIGURATION
//
let mut cr4 = unsafe { cr4() };
// Enable Machine Check Exceptions.
// No need to check for support here, all x86-64 CPUs support it.
cr4.insert(Cr4::CR4_ENABLE_MACHINE_CHECK);
// Enable full SSE support and indicates that the OS saves SSE context using FXSR.
// No need to check for support here, all x86-64 CPUs support at least SSE2.
cr4.insert(Cr4::CR4_ENABLE_SSE | Cr4::CR4_UNMASKED_SSE);
if supports_xsave() {
// Indicate that the OS saves extended context (AVX, AVX2, MPX, etc.) using XSAVE.
cr4.insert(Cr4::CR4_ENABLE_OS_XSAVE);
}
if supports_fsgs() {
cr4.insert(Cr4::CR4_ENABLE_FSGSBASE);
} else {
panic!("libhermit-rs requires the CPU feature FSGSBASE");
}
unsafe { cr4_write(cr4); }
//
// XCR0 CONFIGURATION
//
if supports_xsave() {
// Enable saving the context for all known vector extensions.
// Must happen after CR4_ENABLE_OS_XSAVE has been set.
let mut xcr0 = unsafe { xcr0() };
xcr0.insert(Xcr0::XCR0_FPU_MMX_STATE | Xcr0::XCR0_SSE_STATE);
if supports_avx() {
xcr0.insert(Xcr0::XCR0_AVX_STATE);
}
unsafe { xcr0_write(xcr0); }
}
// Initialize the FS register, which is later used for Thread-Local Storage.
writefs(0);
//
// ENHANCED INTEL SPEEDSTEP CONFIGURATION
//
unsafe { CPU_SPEEDSTEP.configure(); }
}
pub fn detect_frequency() {
unsafe { CPU_FREQUENCY.detect(); }
}
pub fn print_information() {
let cpuid = CpuId::new();
let extended_function_info = cpuid.get_extended_function_info().expect("CPUID Extended Function Info not available!");
let brand_string = extended_function_info.processor_brand_string().expect("CPUID Brand String not available!");
let feature_printer = CpuFeaturePrinter::new(&cpuid);
infoheader!(" CPU INFORMATION ");
infoentry!("Model", brand_string);
unsafe {
infoentry!("Frequency", CPU_FREQUENCY);
infoentry!("SpeedStep Technology", CPU_SPEEDSTEP);
}
infoentry!("Features", feature_printer);
infoentry!("Physical Address Width", "{} bits", get_physical_address_bits());
infoentry!("Linear Address Width", "{} bits", get_linear_address_bits());
infoentry!("Supports 1GiB Pages", if supports_1gib_pages() { "Yes" } else { "No" });
infofooter!();
}
pub fn generate_random_number() -> Option<u32> {
if unsafe { SUPPORTS_RDRAND } {
let value: u32;
unsafe { asm!("rdrand $0" : "=r"(value) ::: "volatile"); }
Some(value)
} else {
None
}
}
#[inline]
pub fn get_linear_address_bits() -> u8 {
unsafe { LINEAR_ADDRESS_BITS }
}
#[inline]
pub fn get_physical_address_bits() -> u8 {
unsafe { PHYSICAL_ADDRESS_BITS }
}
#[inline]
pub fn supports_1gib_pages() -> bool {
unsafe { SUPPORTS_1GIB_PAGES }
}
#[inline]
pub fn supports_avx() -> bool {
unsafe { SUPPORTS_AVX }
}
#[inline]
pub fn supports_tsc_deadline() -> bool {
unsafe { SUPPORTS_TSC_DEADLINE }
}
#[inline]
pub fn supports_x2apic() -> bool {
unsafe { SUPPORTS_X2APIC }
}
#[inline]
pub fn supports_xsave() -> bool {
unsafe { SUPPORTS_XSAVE }
}
#[inline]
pub fn supports_fsgs() -> bool {
unsafe { SUPPORTS_FSGS }
}
/// Search the most significant bit
#[inline(always)]
pub fn msb(value: u64) -> Option<u64> {
if value > 0 {
let ret: u64;
unsafe { asm!("bsr $1, $0" : "=r"(ret) : "r"(value) : "cc" : "volatile"); }
Some(ret)
} else {
None
}
}
/// The halt function stops the processor until the next interrupt arrives
pub fn halt() {
unsafe {
asm!("hlt" :::: "volatile");
}
}
/// Shutdown the system
pub fn shutdown() -> ! {
info!("Shutting down system");
acpi::poweroff();
loop {
halt();
}
}
pub fn get_timer_ticks() -> u64 {
// We simulate a timer with a 1 microsecond resolution by taking the CPU timestamp
// and dividing it by the CPU frequency in MHz.
get_timestamp() / (get_frequency() as u64)
}
pub fn get_frequency() -> u16 {
unsafe { CPU_FREQUENCY.get() }
}
#[inline]
pub fn readfs() -> usize {
let val: u64;
unsafe { asm!("rdfsbase $0" : "=r"(val) ::: "volatile"); }
val as usize
}
#[inline]
pub fn readgs() -> usize {
let val: u64;
unsafe { asm!("rdgsbase $0" : "=r"(val) ::: "volatile"); }
val as usize
}
#[inline]
pub fn writefs(fs: usize) {
unsafe { asm!("wrfsbase $0" :: "r"(fs as u64) :: "volatile"); }
}
#[inline]
pub fn writegs(gs: usize) {
unsafe { asm!("wrgsbase $0" :: "r"(gs as u64) :: "volatile"); }
}
#[inline]
pub fn get_timestamp() -> u64 {
unsafe { TIMESTAMP_FUNCTION() }
}
#[inline]
unsafe fn get_timestamp_rdtsc() -> u64 {
asm!("lfence" ::: "memory" : "volatile");
let value = rdtsc();
asm!("lfence" ::: "memory" : "volatile");
value
}
#[inline]
unsafe fn get_timestamp_rdtscp() -> u64 {
let value = rdtscp();
asm!("lfence" ::: "memory" : "volatile");
value
}
/// Delay execution by the given number of microseconds using busy-waiting.
#[inline]
pub fn udelay(usecs: u64) {
let end = get_timestamp() + get_frequency() as u64 * usecs;
while get_timestamp() < end {
spin_loop_hint();
}
}