-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_utils.py
394 lines (318 loc) · 13 KB
/
dataset_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
#
# Utils for loading datasets from file (csv, tsv, ...).
# otherwise we use load_dataset() from huggingface library.
#
import csv
import random
import ast
def generated_sst5_generate_dataset_dict(filename):
sentence1_list = []
label_list = []
samples0_list = []
samples1_list = []
samples2_list = []
samples3_list = []
samples4_list = []
with open(filename) as f:
tsv_reader = csv.reader(f, delimiter='\t')
for line_index, line in enumerate(tsv_reader):
assert len(line) == 8, f'Line length {len(line)} does not match the expected length 8.'
index = int(line[0])
label = int(line[1])
sentence1 = line[2]
assert line_index == index, f'index {index} != line_index {line_index}'
# convert to list
samples0 = ast.literal_eval(line[3])
samples1 = ast.literal_eval(line[4])
samples2 = ast.literal_eval(line[5])
samples3 = ast.literal_eval(line[6])
samples4 = ast.literal_eval(line[7])
# assert len(samples0) == len(samples1), f'number samples for label 0 {samples0} does not match the number of samples for label 1 {len(samples1)}'
# assert len(samples0) == len(samples2), f'number samples for label 0 {samples0} does not match the number of samples for label 2 {len(samples2)}'
# assert len(samples0) == len(samples3), f'number samples for label 0 {samples0} does not match the number of samples for label 3 {len(samples3)}'
# assert len(samples0) == len(samples4), f'number samples for label 0 {samples0} does not match the number of samples for label 4 {len(samples4)}'
label_list.append(label)
sentence1_list.append(sentence1)
samples0_list.append(samples0)
samples1_list.append(samples1)
samples2_list.append(samples2)
samples3_list.append(samples3)
samples4_list.append(samples4)
return_dict = {
'text' : sentence1_list,
'label' : label_list,
'samples0' : samples0_list,
'samples1' : samples1_list,
'samples2' : samples2_list,
'samples3' : samples3_list,
'samples4' : samples4_list,
}
return return_dict
def generated_cb_generate_dataset_dict(filename):
sentence1_list = []
sentence2_list = []
label_list = []
samples0_list = []
samples1_list = []
samples2_list = []
with open(filename) as f:
tsv_reader = csv.reader(f, delimiter='\t')
for line_index, line in enumerate(tsv_reader):
assert len(line) == 7, f'Line length {len(line)} does not match the expected length 7.'
index = int(line[0])
label = int(line[1])
sentence1 = line[2]
sentence2 = line[3]
assert line_index == index, f'index {index} != line_index {line_index}'
# convert to list
samples0 = ast.literal_eval(line[4])
samples1 = ast.literal_eval(line[5])
samples2 = ast.literal_eval(line[6])
# assert len(samples0) == len(samples1), f'number samples for label 0 {samples0} does not match the number of samples for label 1 {len(samples1)}'
# assert len(samples0) == len(samples2), f'number samples for label 0 {samples0} does not match the number of samples for label 2 {len(samples2)}'
label_list.append(label)
sentence1_list.append(sentence1)
sentence2_list.append(sentence2)
samples0_list.append(samples0)
samples1_list.append(samples1)
samples2_list.append(samples2)
return_dict = {
'premise' : sentence1_list,
'hypothesis' : sentence2_list,
'label' : label_list,
'samples0' : samples0_list,
'samples1' : samples1_list,
'samples2' : samples2_list,
}
return return_dict
def generated_sst2_generate_dataset_dict(filename):
sentence1_list = []
label_list = []
samples0_list = []
samples1_list = []
with open(filename) as f:
tsv_reader = csv.reader(f, delimiter='\t')
for line_index, line in enumerate(tsv_reader):
assert len(line) == 5, f'Line length {len(line)} does not match the expected length 5.'
index = int(line[0])
label = int(line[1])
sentence1 = line[2]
assert line_index == index, f'index {index} != line_index {line_index}'
# convert to list
samples0 = ast.literal_eval(line[3])
samples1 = ast.literal_eval(line[4])
label_list.append(label)
sentence1_list.append(sentence1)
samples0_list.append(samples0)
samples1_list.append(samples1)
return_dict = {
'sentence' : sentence1_list,
'label' : label_list,
'samples0' : samples0_list,
'samples1' : samples1_list,
}
return return_dict
def generated_rte_generate_dataset_dict(filename):
sentence1_list = []
sentence2_list = []
label_list = []
samples0_list = []
samples1_list = []
with open(filename) as f:
tsv_reader = csv.reader(f, delimiter='\t')
for line_index, line in enumerate(tsv_reader):
assert len(line) == 6, f'Line length {len(line)} does not match the expected length 6.'
index = int(line[0])
label = int(line[1])
sentence1 = line[2]
sentence2 = line[3]
assert line_index == index, f'index {index} != line_index {line_index}'
# convert to list
samples0 = ast.literal_eval(line[4])
samples1 = ast.literal_eval(line[5])
# assert len(samples0) == len(samples1), f'number samples for label 0 {samples0} does not match the number of samples for label 1 {len(samples1)}'
# assert len(samples0) == len(samples2), f'number samples for label 0 {samples0} does not match the number of samples for label 2 {len(samples2)}'
label_list.append(label)
sentence1_list.append(sentence1)
sentence2_list.append(sentence2)
samples0_list.append(samples0)
samples1_list.append(samples1)
return_dict = {
'sentence1' : sentence1_list,
'sentence2' : sentence2_list,
'label' : label_list,
'samples0' : samples0_list,
'samples1' : samples1_list,
}
return return_dict
# for using generated datasets.
generated_task_to_path = {
"SetFit/sst5" : {
"validation" : "test.tsv",
"dataset_processor" : generated_sst5_generate_dataset_dict,
},
"sst2" : {
"validation" : "test.tsv",
"dataset_processor" : generated_sst2_generate_dataset_dict,
},
"rte" : {
"validation" : "test.tsv",
"dataset_processor" : generated_rte_generate_dataset_dict,
},
"cb" : {
"validation" : "test.tsv",
"dataset_processor" : generated_cb_generate_dataset_dict,
},
}
task_to_keys = {
"sst2": ("sentence", None), # #labels = 2
"SetFit/sst5": ("text", None), # #labels = 5
"rte": ("sentence1", "sentence2"),
"cb" : ("premise", "hypothesis"),
}
task_to_verbalizer = {
"sst2": {
" negative" : 0,
" positive" : 1,
},
"SetFit/sst5" : {
' terrible' : 0,
' bad' : 1,
' okay' : 2,
' good' : 3,
' great' : 4,
},
"rte" : {
# verbalizer 1
" true" : 0,
" false" : 1,
},
"cb" : {
" yes" : 0,
" no" : 1,
" neither" : 2,
}
}
def prepare_incontext_sampling(train_samples,
verbalizer,
sentence1_key,
sentence2_key,
prefix,
infix,
postfix,
):
label2token = {v:k for k,v in verbalizer.items()}
label2samples = {}
full_samples = []
for sample in train_samples:
sentence1 = sample[sentence1_key]
if 'label' in sample:
label = sample['label']
elif 'label-coarse' in sample:
label = sample['label-coarse']
else:
raise NotImplementedError
label_token = label2token[label]
if sentence2_key is not None:
sentence2 = sample[sentence2_key]
else:
sentence2 = ''
full_sentence = prefix + sentence1 + infix + sentence2 + postfix + label_token
full_samples.append(full_sentence)
# empty list if first sample
label_list = label2samples.get(label, [])
label_list.append(full_sentence)
label2samples[label] = label_list
return label2samples, full_samples
def prepend_incontext_samples(
label2samples,
full_train_samples,
k,
balance_sample,
):
final_sentence = None
sep = '\n\n\n'
# sep = '\n\n\n\n'
# no in-context samples = zero-shot learning
if k == 0:
return '', sep
if balance_sample:
total_count = 0
labels = list(label2samples.keys())
random.shuffle(labels)
# prevent infinite while-loop
samples_map = {label:[i for i in range(len(label2samples[label]))] for label in labels}
while True:
for label in labels:
samples = label2samples[label]
total_length = len(samples)
not_used_indices = [i for i in range(total_length)]
while True:
samples_list = samples_map[label]
random_index = random.randint(0, total_length-1)
selected_sample = samples[random_index]
# we don't want to use duplicate in-context samples
if final_sentence is None:
selected_index = samples_list.index(random_index)
samples_list.pop(selected_index)
samples_map[label] = samples_list
break
if random_index in samples_list:
selected_index = samples_list.index(random_index)
samples_list.pop(selected_index)
samples_map[label] = samples_list
break
if final_sentence is None:
final_sentence = selected_sample
else:
final_sentence = final_sentence + sep + selected_sample
total_count += 1
if total_count == k:
return final_sentence, sep
else:
full_train_samples_copy = full_train_samples.copy()
for index in range(k):
total_length = len(full_train_samples_copy)
random_index = random.randint(0, total_length-1)
selected_sample = full_train_samples_copy.pop(random_index)
if final_sentence is None:
final_sentence = selected_sample
else:
final_sentence = final_sentence + sep + selected_sample
return final_sentence, sep
def prepare_generated_incontext_sampling(generated_samples,
verbalizer,
prefix,
infix,
postfix,
sentence1_key,
sentence2_key,
append_label=True
):
label2token = {v:k for k,v in verbalizer.items()}
num_labels = len(label2token.keys())
label2samples_list=[]
full_samples_list=[]
for samples in generated_samples:
label2samples = {}
full_samples = []
# if sentence2_key is not None -> sentence-pair task -> use the first sentence
sentence1 = samples[sentence1_key] if sentence2_key is not None else None
for label in range(num_labels):
label_token = label2token[label]
if not append_label:
label_token = ''
key = f'samples{label}'
samples_list = samples[key]
promped_samples_list = []
for sample_index, sample in enumerate(samples_list):
if sentence1:
promped_samples_list.append(prefix + sentence1 + infix + sample +postfix + label_token)
else:
promped_samples_list.append(prefix + sample + infix + postfix + label_token)
# samples_list = [prefix + sample + infix + postfix + label_token for sample in samples_list]
full_samples = full_samples + promped_samples_list
label2samples[label] = promped_samples_list
label2samples_list.append(label2samples)
full_samples_list.append(full_samples)
return label2samples_list, full_samples_list