-
Notifications
You must be signed in to change notification settings - Fork 571
/
fcn.py
executable file
·99 lines (71 loc) · 3.22 KB
/
fcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# FCN model
# when tuning start with learning rate->mini_batch_size ->
# momentum-> #hidden_units -> # learning_rate_decay -> #layers
import tensorflow.keras as keras
import tensorflow as tf
import numpy as np
import time
from utils.utils import save_logs
from utils.utils import calculate_metrics
class Classifier_FCN:
def __init__(self, output_directory, input_shape, nb_classes, verbose=False,build=True):
self.output_directory = output_directory
if build == True:
self.model = self.build_model(input_shape, nb_classes)
if(verbose==True):
self.model.summary()
self.verbose = verbose
self.model.save_weights(self.output_directory+'model_init.hdf5')
return
def build_model(self, input_shape, nb_classes):
input_layer = keras.layers.Input(input_shape)
conv1 = keras.layers.Conv1D(filters=128, kernel_size=8, padding='same')(input_layer)
conv1 = keras.layers.BatchNormalization()(conv1)
conv1 = keras.layers.Activation(activation='relu')(conv1)
conv2 = keras.layers.Conv1D(filters=256, kernel_size=5, padding='same')(conv1)
conv2 = keras.layers.BatchNormalization()(conv2)
conv2 = keras.layers.Activation('relu')(conv2)
conv3 = keras.layers.Conv1D(128, kernel_size=3,padding='same')(conv2)
conv3 = keras.layers.BatchNormalization()(conv3)
conv3 = keras.layers.Activation('relu')(conv3)
gap_layer = keras.layers.GlobalAveragePooling1D()(conv3)
output_layer = keras.layers.Dense(nb_classes, activation='softmax')(gap_layer)
model = keras.models.Model(inputs=input_layer, outputs=output_layer)
model.compile(loss='categorical_crossentropy', optimizer = keras.optimizers.Adam(),
metrics=['accuracy'])
reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor='loss', factor=0.5, patience=50,
min_lr=0.0001)
file_path = self.output_directory+'best_model.hdf5'
model_checkpoint = keras.callbacks.ModelCheckpoint(filepath=file_path, monitor='loss',
save_best_only=True)
self.callbacks = [reduce_lr,model_checkpoint]
return model
def fit(self, x_train, y_train, x_val, y_val,y_true):
if not tf.test.is_gpu_available:
print('error')
exit()
# x_val and y_val are only used to monitor the test loss and NOT for training
batch_size = 16
nb_epochs = 2000
mini_batch_size = int(min(x_train.shape[0]/10, batch_size))
start_time = time.time()
hist = self.model.fit(x_train, y_train, batch_size=mini_batch_size, epochs=nb_epochs,
verbose=self.verbose, validation_data=(x_val,y_val), callbacks=self.callbacks)
duration = time.time() - start_time
self.model.save(self.output_directory+'last_model.hdf5')
model = keras.models.load_model(self.output_directory+'best_model.hdf5')
y_pred = model.predict(x_val)
# convert the predicted from binary to integer
y_pred = np.argmax(y_pred , axis=1)
save_logs(self.output_directory, hist, y_pred, y_true, duration)
keras.backend.clear_session()
def predict(self, x_test, y_true,x_train,y_train,y_test,return_df_metrics = True):
model_path = self.output_directory + 'best_model.hdf5'
model = keras.models.load_model(model_path)
y_pred = model.predict(x_test)
if return_df_metrics:
y_pred = np.argmax(y_pred, axis=1)
df_metrics = calculate_metrics(y_true, y_pred, 0.0)
return df_metrics
else:
return y_pred