Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Load Testing Tool #105

Open
hhstore opened this issue Sep 14, 2018 · 3 comments
Open

Load Testing Tool #105

hhstore opened this issue Sep 14, 2018 · 3 comments

Comments

@hhstore
Copy link
Owner

hhstore commented Sep 14, 2018

性能测试工具:

@hhstore hhstore added Test Tool Python python 3.5+ (3.6, 3.7) labels Sep 14, 2018
@hhstore hhstore mentioned this issue Mar 18, 2019
3 tasks
@hhstore
Copy link
Owner Author

hhstore commented Mar 20, 2019

@hhstore
Copy link
Owner Author

hhstore commented Mar 20, 2019

参考:

术语说明:
QPS = req/sec = 请求数/秒

【QPS计算PV和机器的方式】

QPS统计方式 [一般使用 http_load 进行统计]
QPS = 总请求数 / ( 进程总数 *   请求时间 )
QPS: 单个进程每秒请求服务器的成功次数

单台服务器每天PV计算:

公式1:每天总PV = QPS * 3600 * 6
公式2:每天总PV = QPS * 3600 * 8

服务器计算:

服务器数量 =   ceil( 每天总PV / 单台服务器每天总PV )

【峰值QPS和机器计算公式】

原理:每天80%的访问集中在20%的时间里,这20%时间叫做峰值时间公式:( 总PV数 * 80% ) / ( 每天秒数 * 20% ) = 峰值时间每秒请求数(QPS)

机器:峰值时间每秒QPS / 单台机器的QPS   = 需要的机器问:每天300w PV 的在单台机器上,这台机器需要多少QPS?答:( 3000000 * 0.8 ) / (86400 * 0.2 ) = 139 (QPS)

问:如果一台机器的QPS是58,需要几台机器来支持?
答:139 / 58 = 3



测试案例:

django 并发测试:

测试机器:四核,4GB内存
系统环境:Ubuntu 14.04 LTS
测试环境:django
测试工具:apache ab
测试参数:1000个并发 1000~10000个请求

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

1 participant