-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathperfprof.m
42 lines (36 loc) · 1.59 KB
/
perfprof.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
function [th_max,h] = perfprof(A,th_max)
%PERFPROF Performance profile.
% [th_max, h] = PERFPROF(A,th_max) produces a
% peformance profile for the data in the M-by-N matrix A,
% where A(i,j) > 0 measures the performance of the j'th solver
% on the i'th problem, with smaller values of A(i,j) denoting
% "better". For each solver theta is plotted against the
% probability that the solver is within a factor theta of
% the best solver over all problems, for theta on the interval
% [1, th_max].
% Set A(i,j) = NaN if solver j failed to solve problem i.
% TH_MAX defaults to the smallest value of theta for which
% all probabilities are 1 (modulo any NaN entries of A).
% h is a vector of handles to the lines with h(j)
% corresponding to the j'th solver.
minA = min(A,[],2);
if nargin < 2, th_max = max( max(A,[],2)./minA ); end
tol = sqrt(eps); % Tolerance.
[m,n] = size(A); % m problems, n solvers.
for j = 1:n % Loop over solvers.
col = A(:,j)./minA; % Performance ratios.
col = col(~isnan(col)); % Remove NaNs.
if isempty(col), continue; end
theta = unique(col)'; % Unique elements, in increasing order.
r = length(theta);
prob = sum( col(:,ones(r,1)) <= theta(ones(length(col),1),:) ) / m;
% Assemble data points for stairstep plot.
k = [1:r; 1:r]; k = k(:)';
x = theta(k(2:end)); y = prob(k(1:end-1));
% Ensure endpoints plotted correctly.
if x(1) >= 1 + tol, x = [1 x(1) x]; y = [0 0 y]; end
if x(end) < th_max - tol, x = [x th_max]; y = [y y(end)]; end
h(j) = plot(x,y); hold on
end
hold off
xlim([1 th_max])