-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathnvme.cc
242 lines (219 loc) · 7.48 KB
/
nvme.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
#include "nvme.h"
#include <stddef.h> /* offsetof */
void DevNvme::Init() {
assert(sizeof(CommandSet) == 64);
assert(sizeof(CompletionQueueEntry) == 16);
// sizeof(CompletionQueueEntry) may change
// in the future impl (see section 4.6 in spec)
assert(sizeof(IdentifyControllerData) == 4096);
assert(offsetof(IdentifyNamespaceData, LBAF) == 128);
_pci.Init();
assert(_pci.HasClassCodes(0x01, 0x08, 0x02));
{
// Enable Bus Master for transfering data from controller to host.
uint8_t interface, sub, base;
_pci.ReadPciReg(DevPci::kRegInterfaceClassCode, interface);
_pci.ReadPciReg(DevPci::kRegSubClassCode, sub);
_pci.ReadPciReg(DevPci::kRegBaseClassCode, base);
uint16_t command;
_pci.ReadPciReg(DevPci::kCommandReg, command);
command |= DevPci::kCommandRegBusMasterEnableFlag;
_pci.WritePciReg(DevPci::kCommandReg, command);
}
MapControlRegisters();
{
// check CAP
ControllerCapabilities cap;
cap.qword = _ctrl_reg_64_base[kCtrlReg64OffsetCAP];
PrintControllerCapabilities(cap);
_ctrl_timeout_worst = cap.bits.TO * 500 * 1000; // in unit 500ms -> us
_doorbell_stride = cap.bits.DSTRD;
}
PrintControllerConfiguration();
PrintControllerStatus();
{
ControllerStatus csts;
csts.dword = _ctrl_reg_32_base[kCtrlReg32OffsetCSTS];
if (csts.bits.CFS) {
puts("**** Controller is in fatal state. ****");
}
if (csts.bits.RDY || csts.bits.CFS) {
if (csts.bits.SHST == kCSTS_SHST_Normal || csts.bits.CFS) {
// shutdown if needed
puts("Performing shutdown...");
ControllerConfiguration cc;
cc.dword = _ctrl_reg_32_base[kCtrlReg32OffsetCC];
cc.bits.SHN = kCC_SHN_AbruptShutdown;
_ctrl_reg_32_base[kCtrlReg32OffsetCC] = cc.dword;
//
usleep(kCtrlTimeout);
}
csts.dword = _ctrl_reg_32_base[kCtrlReg32OffsetCSTS];
if (csts.bits.SHST != kCSTS_SHST_Completed) {
// wait more
usleep(_ctrl_timeout_worst);
if (csts.bits.SHST != kCSTS_SHST_Completed) {
puts("Failed to shutdown controller.");
exit(EXIT_FAILURE);
}
}
// reset controller
puts("Performing reset...");
ControllerConfiguration cc;
cc.dword = _ctrl_reg_32_base[kCtrlReg32OffsetCC];
cc.bits.EN = 0;
_ctrl_reg_32_base[kCtrlReg32OffsetCC] = cc.dword;
//
usleep(kCtrlTimeout);
csts.dword = _ctrl_reg_32_base[kCtrlReg32OffsetCSTS];
if (csts.bits.RDY) {
// try again
usleep(_ctrl_timeout_worst);
if (csts.bits.RDY) {
puts("Failed to reset controller.");
exit(EXIT_FAILURE);
}
}
} else {
puts("Reset not required");
}
}
_adminQueue = new DevNvmeAdminQueue();
_adminQueue->Init(this);
{
// set ControllerConfiguration
ControllerConfiguration cc;
cc.dword = _ctrl_reg_32_base[kCtrlReg32OffsetCC];
// PrintControllerConfiguration(cc);
cc.bits.AMS = kCC_AMS_RoundRobin;
cc.bits.MPS = 0; // for 4KB. TODO: changed to be decided dynamically.
cc.bits.CSS = kCC_CSS_NVMeCommandSet;
cc.bits.SHN = kCC_SHN_NoNotification;
_ctrl_reg_32_base[kCtrlReg32OffsetCC] = cc.dword;
}
{
// enable controller
ControllerConfiguration cc;
ControllerStatus csts;
puts("Enabling controller...");
cc.dword = _ctrl_reg_32_base[kCtrlReg32OffsetCC];
cc.bits.EN = 1;
_ctrl_reg_32_base[kCtrlReg32OffsetCC] = cc.dword;
//
usleep(kCtrlTimeout);
csts.dword = _ctrl_reg_32_base[kCtrlReg32OffsetCSTS];
if (!csts.bits.RDY) {
// try again
usleep(_ctrl_timeout_worst);
csts.dword = _ctrl_reg_32_base[kCtrlReg32OffsetCSTS];
if (!csts.bits.RDY) {
puts("Failed to enable controller.");
exit(EXIT_FAILURE);
}
}
}
// Controller initialize completed.
puts("Controller initialized.");
Run();
return;
}
void DevNvme::Run() {
if (pthread_create(&_irq_handler_thread, NULL, IrqHandler, this) != 0) {
perror("pthread_create:");
exit(1);
}
AttachAllNamespaces();
}
void *DevNvme::IrqHandler(void *arg) {
DevNvme *nvme = reinterpret_cast<DevNvme *>(arg);
while (true) {
// nvme->_pci.WaitInterrupt();
nvme->_pci.WaitInterruptPolling();
// admin queue
nvme->_adminQueue->InterruptHandler();
if (nvme->_ioQueue) {
nvme->_ioQueue->InterruptHandler();
}
}
}
void DevNvme::AttachAllNamespaces() {
{
Memory prp1(4096);
_adminQueue->SubmitCmdIdentify(&prp1, 0xffffffff, 0, 0x01);
IdentifyControllerData *idata = prp1.GetVirtPtr<IdentifyControllerData>();
printf(" VID: %4X\n", idata->VID);
printf("SSVID: %4X\n", idata->SSVID);
printf(" SN: %.20s\n", idata->SN);
printf(" MN: %.40s\n", idata->MN);
printf(" FR: %.8s\n", idata->FR);
}
_ioQueue = new DevNvmeIoQueue();
_ioQueue->Init(this, _adminQueue, 1, 8, 8);
{
// TODO: support 1024< entries.
Memory prp1(4096);
_adminQueue->SubmitCmdIdentify(&prp1, 0x00000000, 0, 0x02);
uint32_t *id_list = prp1.GetVirtPtr<uint32_t>();
int i;
for (i = 0; i < 1024; i++) {
if (id_list[i] == 0) break;
_namespaces[i] = new DevNvmeNamespace();
_namespaces[i]->Init(this, _adminQueue, id_list[i]);
_adminQueue->AttachNamespace(id_list[i], 1);
}
printf("%d namespaces found.\n", i);
}
}
void DevNvme::MapControlRegisters() {
uint32_t addr_bkup;
_pci.ReadPciReg(DevPci::kBaseAddressReg0, addr_bkup);
_pci.WritePciReg(DevPci::kBaseAddressReg0, 0xFFFFFFFF);
uint32_t size;
_pci.ReadPciReg(DevPci::kBaseAddressReg0, size);
size = ~size + 1;
_pci.WritePciReg(DevPci::kBaseAddressReg0, addr_bkup);
int fd = open("/sys/class/uio/uio0/device/resource0", O_RDWR);
if (!fd) {
perror("MapControlRegisters");
exit(EXIT_FAILURE);
}
_ctrl_reg_8_base = reinterpret_cast<volatile uint8_t *>(
mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0));
_ctrl_reg_8_size = size;
close(fd);
//
_ctrl_reg_32_base = reinterpret_cast<volatile uint32_t *>(_ctrl_reg_8_base);
_ctrl_reg_64_base = reinterpret_cast<volatile uint64_t *>(_ctrl_reg_8_base);
}
void DevNvme::PrintControllerConfiguration() {
ControllerConfiguration cc;
cc.dword = _ctrl_reg_32_base[kCtrlReg32OffsetCC];
printf("CC: EN=%d CSS=%d MPS=%d AMS=%d SHN=%d IOSQES=%d IOCQES=%d \n",
cc.bits.EN, cc.bits.CSS, cc.bits.MPS, cc.bits.AMS, cc.bits.SHN,
cc.bits.IOSQES, cc.bits.IOCQES);
}
void DevNvme::PrintControllerStatus() {
ControllerStatus csts;
csts.dword = _ctrl_reg_32_base[kCtrlReg32OffsetCSTS];
printf("CSTS: RDY=%d CFS=%d SHST=%d NSSRO=%d PP=%d \n", csts.bits.RDY,
csts.bits.CFS, csts.bits.SHST, csts.bits.NSSRO, csts.bits.PP);
}
void DevNvme::PrintControllerCapabilities(ControllerCapabilities cap) {
printf("CAP: TO=%d NSSRS=%d \n", cap.bits.TO, cap.bits.NSSRS);
}
void DevNvme::PrintCompletionQueueEntry(volatile CompletionQueueEntry *cqe) {
printf("CQE: SF.P=0x%X SF.SC=0x%X SF.SCT=0x%X\n", cqe->SF.P, cqe->SF.SC,
cqe->SF.SCT);
}
void DevNvme::PrintAdminQueuesSettings() {
printf("ASQ @ physical %p (size = %u)\n",
(void *)_ctrl_reg_64_base[kCtrlReg64OffsetASQ],
_ctrl_reg_32_base[kCtrlReg32OffsetAQA] & 0xffff);
printf("ACQ @ physical %p (size = %u)\n",
(void *)_ctrl_reg_64_base[kCtrlReg64OffsetACQ],
_ctrl_reg_32_base[kCtrlReg32OffsetAQA] >> 16);
}
void DevNvme::PrintInterruptMask() {
printf("INTMC: 0x%X\n", _ctrl_reg_32_base[kCtrlReg32OffsetINTMC]);
printf("INTMS: 0x%X\n", _ctrl_reg_32_base[kCtrlReg32OffsetINTMS]);
}