-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathutil.py
109 lines (96 loc) · 3.87 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import tensorflow as tf
import numpy as np
import datetime
import json
from collections import namedtuple
def parse_arguments(json_file):
with open(json_file) as f:
arg = json.load(f)
return arg
def tic():
global _start_time
_start_time = datetime.datetime.now()
def toc():
_stop_time = datetime.datetime.now()
ms = (_stop_time - _start_time).total_seconds() * 1000
(t_sec, t_msec) = divmod(ms, 1000)
(t_min, t_sec) = divmod(t_sec, 60)
(t_hour, t_min) = divmod(t_min, 60)
print('Elapsed: {} h : {} m : {} s : {} ms'.format(t_hour, t_min, t_sec, t_msec))
def leaky_relu(x, alpha=0.1, name="LeakyReLU"):
""" LeakyReLU.
Modified version of ReLU, introducing a nonzero gradient for negative
input.
Arguments:
x: A `Tensor` with type `float`, `double`, `int32`, `int64`, `uint8`,
`int16`, or `int8`.
alpha: `float`. slope.
name: A name for this activation op (optional).
Returns:
A `Tensor` with the same type as `x`.
References:
Rectifier Nonlinearities Improve Neural Network Acoustic Models,
Maas et al. (2013).
Links:
[http://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf]
(http://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf)
"""
# If incoming Tensor has a scope, this op is defined inside it
i_scope = ""
if hasattr(x, 'scope'):
if x.scope:
i_scope = x.scope
with tf.name_scope(i_scope + name) as scope:
x = tf.nn.relu(x)
m_x = tf.nn.relu(-x)
x -= alpha * m_x
x.scope = scope
return x
def sort_point_cloud_xyz(batch_data):
""" Sort the point clouse base on coordinate with piority x -> y -> z
Input:
BxNxK array, original batch of point clouds. First three channels are XYZ.
Return:
BxNxK array, sorted batch of point clouds
"""
sorted_data = np.zeros(batch_data.shape, dtype=np.float32)
num_channels = batch_data.shape[2]
for k in range(batch_data.shape[0]):
shape_pc = batch_data[k, ...]
shape_pc = shape_pc.reshape((-1, num_channels))
shape_pc = shape_pc[shape_pc[:,2].argsort()] # sort the least significant field first.
shape_pc = shape_pc[shape_pc[:,1].argsort(kind='mergesort')] # from now we need to use a stable sort algorithm
shape_pc = shape_pc[shape_pc[:,0].argsort(kind='mergesort')]
sorted_data[k, ...] = shape_pc
#print("sorted data: ")
#print(sorted_data)
return sorted_data
def sort_point_cloud_xyz2(batch_data, batch_attributes):
""" Sort the point clouse base on coordinate with piority x -> y -> z.
Also change the order of the attributes of each point accordingly.
Input:
BxNxK array, original batch of point clouds. First three channels are XYZ.
BxNxM array, original batch of point attributes.
Return:
BxNxK array, sorted batch of point clouds
BxNxM array, sorted batch of point attributes
"""
sorted_data = np.zeros(batch_data.shape, dtype=batch_data.dtype)
sorted_attr = np.zeros(batch_attributes.shape, dtype=batch_attributes.dtype)
for k in range(batch_data.shape[0]):
shape_pc = batch_data[k, ...]
shape_attr = batch_attributes[k, ...]
# sort the least significant field first
idx = shape_pc[:,2].argsort() # return index
shape_pc = shape_pc[idx] # swap rows
shape_attr = shape_attr[idx]
# from now we need to use a stable sort algorithm
idx = shape_pc[:,1].argsort(kind='mergesort')
shape_pc = shape_pc[idx]
shape_attr = shape_attr[idx]
idx = shape_pc[:,0].argsort(kind='mergesort')
shape_pc = shape_pc[idx]
shape_attr = shape_attr[idx]
sorted_data[k, ...] = shape_pc
sorted_attr[k, ...] = shape_attr
return sorted_data, sorted_attr