-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathpart_dataset_all_normal.py
134 lines (111 loc) · 5.16 KB
/
part_dataset_all_normal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
'''
Dataset for ShapeNetPart segmentation
'''
import os
import os.path
import json
import numpy as np
import sys
def pc_normalize(pc):
l = pc.shape[0]
centroid = np.mean(pc, axis=0)
pc = pc - centroid
m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
pc = pc / m
return pc
class PartNormalDataset():
def __init__(self, root, npoints = 2500, classification = False, split='train', normalize=True, return_cls_label = False):
self.npoints = npoints
self.root = root
self.catfile = os.path.join(self.root, 'synsetoffset2category.txt')
self.cat = {}
self.classification = classification
self.normalize = normalize
self.return_cls_label = return_cls_label
with open(self.catfile, 'r') as f:
for line in f:
ls = line.strip().split()
self.cat[ls[0]] = ls[1]
self.cat = {k:v for k,v in self.cat.items()}
#print(self.cat)
self.meta = {}
with open(os.path.join(self.root, 'train_test_split', 'shuffled_train_file_list.json'), 'r') as f:
train_ids = set([str(d.split('/')[2]) for d in json.load(f)])
with open(os.path.join(self.root, 'train_test_split', 'shuffled_val_file_list.json'), 'r') as f:
val_ids = set([str(d.split('/')[2]) for d in json.load(f)])
with open(os.path.join(self.root, 'train_test_split', 'shuffled_test_file_list.json'), 'r') as f:
test_ids = set([str(d.split('/')[2]) for d in json.load(f)])
for item in self.cat:
#print('category', item)
self.meta[item] = []
dir_point = os.path.join(self.root, self.cat[item])
fns = sorted(os.listdir(dir_point))
#print(fns[0][0:-4])
if split=='trainval':
fns = [fn for fn in fns if ((fn[0:-4] in train_ids) or (fn[0:-4] in val_ids))]
elif split=='train':
fns = [fn for fn in fns if fn[0:-4] in train_ids]
elif split=='val':
fns = [fn for fn in fns if fn[0:-4] in val_ids]
elif split=='test':
fns = [fn for fn in fns if fn[0:-4] in test_ids]
else:
print('Unknown split: %s. Exiting..'%(split))
exit(-1)
#print(os.path.basename(fns))
for fn in fns:
token = (os.path.splitext(os.path.basename(fn))[0])
self.meta[item].append(os.path.join(dir_point, token + '.txt'))
self.datapath = []
for item in self.cat:
for fn in self.meta[item]:
self.datapath.append((item, fn))
self.classes = dict(zip(self.cat, range(len(self.cat))))
# Mapping from category ('Chair') to a list of int [10,11,12,13] as segmentation labels
self.seg_classes = {'Earphone': [16, 17, 18], 'Motorbike': [30, 31, 32, 33, 34, 35], 'Rocket': [41, 42, 43], 'Car': [8, 9, 10, 11], 'Laptop': [28, 29], 'Cap': [6, 7], 'Skateboard': [44, 45, 46], 'Mug': [36, 37], 'Guitar': [19, 20, 21], 'Bag': [4, 5], 'Lamp': [24, 25, 26, 27], 'Table': [47, 48, 49], 'Airplane': [0, 1, 2, 3], 'Pistol': [38, 39, 40], 'Chair': [12, 13, 14, 15], 'Knife': [22, 23]}
for cat in sorted(self.seg_classes.keys()):
print(cat, self.seg_classes[cat])
self.cache = {} # from index to (point_set, cls, seg) tuple
self.cache_size = 20000
def __getitem__(self, index):
if index in self.cache:
point_set, normal, seg, cls = self.cache[index]
else:
fn = self.datapath[index]
cat = self.datapath[index][0]
cls = self.classes[cat]
cls = np.array([cls]).astype(np.int32)
data = np.loadtxt(fn[1]).astype(np.float32)
point_set = data[:,0:3]
if self.normalize:
point_set = pc_normalize(point_set)
normal = data[:,3:6]
seg = data[:,-1].astype(np.int32)
if len(self.cache) < self.cache_size:
self.cache[index] = (point_set, normal, seg, cls)
choice = np.random.choice(len(seg), self.npoints, replace=True)
#resample
point_set = point_set[choice, :]
seg = seg[choice]
normal = normal[choice,:]
if self.classification:
return point_set, normal, cls
else:
if self.return_cls_label:
return point_set, normal, seg, cls
else:
return point_set, normal, seg
def __len__(self):
return len(self.datapath)
if __name__ == '__main__':
d = PartNormalDataset(root = '../data/shapenetcore_partanno_segmentation_benchmark_v0_normal', split='trainval', npoints=3000)
print(len(d))
i = 500
ps, normal, seg = d[i]
sys.path.append('../utils')
import show3d_balls
show3d_balls.showpoints(ps, normal+1, ballradius=8)
d = PartNormalDataset(root = '../data/shapenetcore_partanno_segmentation_benchmark_v0_normal', classification = True)
print(len(d))
ps, normal, cls = d[0]
print(ps.shape, type(ps), cls.shape,type(cls))