-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathtext2vid_torch2.py
707 lines (550 loc) · 28.8 KB
/
text2vid_torch2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL, UNet3DConditionModel
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (deprecate,
logging,
replace_example_docstring)
from diffusers.pipelines.text_to_video_synthesis import TextToVideoSDPipelineOutput
from torch.nn import functional as F
from diffusers.models.attention_processor import Attention
import math
TAU_2 = 15
TAU_1 = 10
def init_attention_params(unet, num_frames, lambda_=None, bs=None):
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "Attention":
module.processor.LAMBDA = lambda_
module.processor.bs = bs
module.processor.num_frames = num_frames
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0,
is_causal=False, scale=None, enable_gqa=False, k1 = None, d_l = None) -> torch.Tensor:
L, S = query.size(-2), key.size(-2)
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
attn_bias = torch.zeros(L, S, dtype=query.dtype).to(query.device)
if is_causal:
assert attn_mask is None
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(query.dtype)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask
if enable_gqa:
if k1 is not None and d_l is not None:
k1 = k1.repeat_interleave(query.size(-3)//k1.size(-3), -3)
key = key.repeat_interleave(query.size(-3)//key.size(-3), -3)
value = value.repeat_interleave(query.size(-3)//value.size(-3), -3)
if k1 is not None:
attn_k1 = query @ k1.transpose(-2, -1)
attn_weight = query @ key.transpose(-2, -1)
attn_weight[:,:len(d_l),0] = attn_k1[:,:len(d_l),0] * d_l
attn_weight = attn_weight * scale_factor
else:
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight += attn_bias
attn_weight = torch.softmax(attn_weight, dim=-1)
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
return attn_weight @ value
class AttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
*args,
**kwargs,
) -> torch.Tensor:
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
deprecate("scale", "1.0.0", deprecation_message)
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query, key, d_l, k1 = self.get_qk(query, key)
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
if d_l is not None:
k1 = k1.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
hidden_states = scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False, k1 = k1, d_l = d_l
)
else:
hidden_states = scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def get_qk(
self, query, key):
r"""
Compute the attention scores.
Args:
query (`torch.Tensor`): The query tensor.
key (`torch.Tensor`): The key tensor.
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied.
Returns:
`torch.Tensor`: The attention probabilities/scores.
"""
q_old = query.clone()
k_old = key.clone()
dynamic_lambda = None
key1 = None
if self.use_last_attn_slice:# and self.last_attn_slice[0].shape[0] == query.shape[0]:# and query.shape[1]==self.num_frames:
if self.last_attn_slice is not None:
query_list = self.last_attn_slice[0]
key_list = self.last_attn_slice[1]
if query.shape[1] == self.num_frames and query.shape == key.shape:
key1 = key.clone()
key1[:,:1,:key_list.shape[2]] = key_list[:,:1]
dynamic_lambda = torch.tensor([1 + self.LAMBDA * (i/50) for i in range(self.num_frames)]).to(key.dtype).cuda()
if q_old.shape == k_old.shape and q_old.shape[1]!=self.num_frames:
batch_dim = query_list.shape[0] // self.bs
all_dim = query.shape[0] // self.bs
for i in range(self.bs):
query[i*all_dim:(i*all_dim) + batch_dim,:query_list.shape[1],:query_list.shape[2]] = query_list[i*batch_dim:(i+1)*batch_dim]
if self.save_last_attn_slice:
self.last_attn_slice = [
query,
key,
]
self.save_last_attn_slice = False
return query, key, dynamic_lambda, key1
def init_attention_func(unet):
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "Attention":
module.set_processor(AttnProcessor2_0())
module.processor.last_attn_slice = None
module.processor.use_last_attn_slice = False
module.processor.save_last_attn_slice = False
module.processor.LAMBDA = 0
module.processor.num_frames = None
module.processor.bs = 0
return unet
def use_last_self_attention(unet, use=True):
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "Attention" and "attn1" in name:
module.processor.use_last_attn_slice = use
def save_last_self_attention(unet, save=True):
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "Attention" and "attn1" in name:
module.processor.save_last_attn_slice = save
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import TextToVideoSDPipeline
>>> from diffusers.utils import export_to_video
>>> pipe = TextToVideoSDPipeline.from_pretrained(
... "damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16"
... )
>>> pipe.enable_model_cpu_offload()
>>> prompt = "Spiderman is surfing"
>>> video_frames = pipe(prompt).frames[0]
>>> video_path = export_to_video(video_frames)
>>> video_path
```
"""
# Copied from diffusers.pipelines.animatediff.pipeline_animatediff.tensor2vid
def tensor2vid(video: torch.Tensor, processor: "VaeImageProcessor", output_type: str = "np"):
batch_size, channels, num_frames, height, width = video.shape
outputs = []
for batch_idx in range(batch_size):
batch_vid = video[batch_idx].permute(1, 0, 2, 3)
batch_output = processor.postprocess(batch_vid, output_type)
outputs.append(batch_output)
if output_type == "np":
outputs = np.stack(outputs)
elif output_type == "pt":
outputs = torch.stack(outputs)
elif not output_type == "pil":
raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']")
return outputs
from diffusers import TextToVideoSDPipeline
class TextToVideoSDPipelineModded(TextToVideoSDPipeline):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet3DConditionModel,
scheduler: KarrasDiffusionSchedulers,
):
super().__init__(vae, text_encoder, tokenizer, unet, scheduler)
def call_network(self,
negative_prompt_embeds,
prompt_embeds,
latents,
inv_latents,
t,
i,
null_embeds,
cross_attention_kwargs,
extra_step_kwargs,
do_classifier_free_guidance,
guidance_scale,
):
inv_latent_model_input = inv_latents
inv_latent_model_input = self.scheduler.scale_model_input(inv_latent_model_input, t)
latent_model_input = latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
if do_classifier_free_guidance:
noise_pred_uncond = self.unet(
latent_model_input,
t,
encoder_hidden_states=negative_prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
noise_null_pred_uncond = self.unet(
inv_latent_model_input,
t,
encoder_hidden_states=negative_prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
if i<=TAU_2:
save_last_self_attention(self.unet)
noise_null_pred = self.unet(
inv_latent_model_input,
t,
encoder_hidden_states=null_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
if do_classifier_free_guidance:
noise_null_pred = noise_null_pred_uncond + guidance_scale * (noise_null_pred - noise_null_pred_uncond)
bsz, channel, frames, width, height = inv_latents.shape
inv_latents = inv_latents.permute(0, 2, 1, 3, 4).reshape(bsz*frames, channel, height, width)
noise_null_pred = noise_null_pred.permute(0, 2, 1, 3, 4).reshape(bsz*frames, channel, height, width)
inv_latents = self.scheduler.step(noise_null_pred, t, inv_latents, **extra_step_kwargs).prev_sample
inv_latents = inv_latents[None, :].reshape((bsz, frames , -1) + inv_latents.shape[2:]).permute(0, 2, 1, 3, 4)
use_last_self_attention(self.unet)
else:
noise_null_pred = None
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds, # For unconditional guidance
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
use_last_self_attention(self.unet, False)
if do_classifier_free_guidance:
noise_pred_text = noise_pred
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# reshape latents
bsz, channel, frames, width, height = latents.shape
latents = latents.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# reshape latents back
latents = latents[None, :].reshape(bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4)
return {
"latents": latents,
"inv_latents": inv_latents,
"noise_pred": noise_pred,
"noise_null_pred": noise_null_pred,
}
def optimize_latents(self, latents, inv_latents, t, i, null_embeds, cross_attention_kwargs, prompt_embeds):
inv_scaled = self.scheduler.scale_model_input(inv_latents, t)
noise_null_pred = self.unet(
inv_scaled[:,:,0:1,:,:],
t,
encoder_hidden_states=null_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
with torch.enable_grad():
latent_train = latents[:,:,1:,:,:].clone().detach().requires_grad_(True)
optimizer = torch.optim.Adam([latent_train], lr=1e-3)
for j in range(10):
latent_in = torch.cat([inv_latents[:,:,0:1,:,:].detach(), latent_train], dim=2)
latent_input_unet = self.scheduler.scale_model_input(latent_in, t)
noise_pred = self.unet(
latent_input_unet,
t,
encoder_hidden_states=prompt_embeds, # For unconditional guidance
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
loss = torch.nn.functional.mse_loss(noise_pred[:,:,0,:,:], noise_null_pred[:,:,0,:,:])
loss.backward()
optimizer.step()
optimizer.zero_grad()
print("Iteration {} Subiteration {} Loss {} ".format(i, j, loss.item()))
latents = latent_in.detach()
return latents
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_frames: int = 16,
num_inference_steps: int = 50,
guidance_scale: float = 9.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
inv_latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "np",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
clip_skip: Optional[int] = None,
lambda_ = 0.5,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated video.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated video.
num_frames (`int`, *optional*, defaults to 16):
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
amounts to 2 seconds of video.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
`(batch_size, num_channel, num_frames, height, width)`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
output_type (`str`, *optional*, defaults to `"np"`):
The output format of the generated video. Choose between `torch.FloatTensor` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
of a plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
Examples:
Returns:
[`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
num_images_per_prompt = 1
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
# # 2. Define call parameters
# if prompt is not None and isinstance(prompt, str):
# batch_size = 1
# elif prompt is not None and isinstance(prompt, list):
# batch_size = len(prompt)
# else:
# batch_size = prompt_embeds.shape[0]
batch_size = inv_latents.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
[prompt] * batch_size,
device,
num_images_per_prompt,
do_classifier_free_guidance,
[negative_prompt] * batch_size if negative_prompt is not None else None,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=clip_skip,
)
null_embeds, negative_prompt_embeds = self.encode_prompt(
[""] * batch_size,
device,
num_images_per_prompt,
do_classifier_free_guidance,
[negative_prompt] * batch_size if negative_prompt is not None else None,
prompt_embeds=None,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=clip_skip,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
num_frames,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
inv_latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
num_frames,
height,
width,
prompt_embeds.dtype,
device,
generator,
inv_latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
init_attention_func(self.unet)
print("Setup for Current Run")
print("----------------------")
print("Prompt ", prompt)
print("Batch size ", batch_size)
print("Num frames ", latents.shape[2])
print("Lambda ", lambda_)
init_attention_params(self.unet, num_frames=latents.shape[2], lambda_=lambda_, bs = batch_size)
iters_to_alter = [-1]#i for i in range(0, TAU_1)]
with self.progress_bar(total=num_inference_steps) as progress_bar:
mask_in = torch.zeros(latents.shape).to(dtype=latents.dtype, device=latents.device)
mask_in[:, :, 0, :, :] = 1
assert latents.shape[0] == inv_latents.shape[0], "Latents and Inverse Latents should have the same batch but got {} and {}".format(latents.shape[0], inv_latents.shape[0])
inv_latents = inv_latents.repeat(1,1,num_frames,1,1)
latents = inv_latents * mask_in + latents * (1-mask_in)
for i, t in enumerate(timesteps):
curr_copy = max(1,num_frames - i)
inv_latents = inv_latents[:,:,:curr_copy, :, : ]
if i in iters_to_alter:
latents = self.optimize_latents(latents, inv_latents, t, i, null_embeds, cross_attention_kwargs, prompt_embeds)
output_dict = self.call_network(
negative_prompt_embeds,
prompt_embeds,
latents,
inv_latents,
t,
i,
null_embeds,
cross_attention_kwargs,
extra_step_kwargs,
do_classifier_free_guidance,
guidance_scale,
)
latents = output_dict["latents"]
inv_latents = output_dict["inv_latents"]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
# 8. Post processing
if output_type == "latent":
video = latents
else:
video_tensor = self.decode_latents(latents)
video = tensor2vid(video_tensor, self.image_processor, output_type)
# 9. Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return TextToVideoSDPipelineOutput(frames=video)