-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathresnet_test.py
233 lines (191 loc) · 10.3 KB
/
resnet_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
from __future__ import print_function
import tensorflow as tf
import numpy as np
import math
import os
import sys
from tensorflow.examples.tutorials.mnist import input_data
class Resnet():
def __init__(self, input_shape, n_classes, learning_rate = 1e-3):
self.input_shape = input_shape
self.n_classes = n_classes
self.learning_rate = learning_rate
self.global_step = tf.Variable(0, dtype = tf.float32, trainable = False, name = "global_step")
self._create_placeholder()
self._build_model()
self._create_loss()
self._create_optimizer()
self._create_evaluater()
def _create_placeholder(self):
self.input = tf.placeholder(dtype = tf.float32,
shape = [None, 784],
name = 'input')
self.input_ = tf.reshape(self.input, [-1, 28, 28, 1])
self.output = tf.placeholder(dtype = tf.float32, shape = [None, self.n_classes])
@staticmethod
def new_Weight(shape):
size = 1.0
for x in shape:
size *= x
return tf.Variable(tf.truncated_normal(shape, stddev=1.0 / math.sqrt(size)))
@staticmethod
def new_Bias(shape):
return tf.Variable(tf.constant(0.01, shape=[shape]))
@staticmethod
def _leaky_relu(input, alpha = 0.3):
return tf.maximum(input, alpha *input)
def _conv2d(self, input, filter_size, n_filters, strides, padding = 'VALID', use_relu = False):
n_input_channels = int(input.shape[-1])
shape = [filter_size, filter_size, n_input_channels, n_filters]
weights = self.new_Weight(shape)
biases = self.new_Bias(n_filters)
layer = tf.nn.conv2d(input = input,
filter = weights,
strides = [1, strides, strides, 1],
padding = padding)
layer += biases
if use_relu:
# layer = tf.nn.relu(layer)
layer = self._leaky_relu(layer)
tf.summary.histogram("weights", weights)
tf.summary.histogram("biases", biases)
tf.summary.histogram("layer", layer)
return layer
def _maxpooling2d_layer(self, input, size, strides):
layer = tf.nn.max_pool(value = input,
ksize=[1, size, size, 1],
strides=[1, strides, strides, 1],
padding='VALID')
return layer
def _batch_norm(self, input):
batch_mean, batch_var = tf.nn.moments(input ,[0])
depth = int(input.shape[-1])
scale = self.new_Bias(depth)
beta = self.new_Bias(depth)
layer = tf.nn.batch_normalization(input, batch_mean, batch_var , beta, scale, 1e-3)
return layer
def _activation_relu(self, input):
# return tf.nn.relu(input)
return self._leaky_relu(input)
def _identity_block(self, input, kernel_size, filters):
n_filters1, n_filters2, n_filters3 = filters
x1 = self._conv2d(input, filter_size = 1, n_filters = n_filters1, strides = 1)
x2 = self._batch_norm(x1)
x3 = self._activation_relu(x2)
x4 = self._conv2d(x3, filter_size = kernel_size, n_filters = n_filters2, strides = 1, padding = 'SAME')
x5 = self._batch_norm(x4)
x6 = self._activation_relu(x5)
x7 = self._conv2d(x6, filter_size = 1, n_filters = n_filters3, strides = 1)
x8 = self._batch_norm(x7)
x9 = tf.add(x8, input)
x10 = self._activation_relu(x9)
return x10
def _conv_block(self, input, kernel_size, filters, strides = 2):
n_filters1, n_filters2, n_filters3 = filters
x1 = self._conv2d(input, filter_size = 1, n_filters = n_filters1, strides = strides)
x2 = self._batch_norm(x1)
x3 = self._activation_relu(x2)
x4 = self._conv2d(x3, filter_size = kernel_size, n_filters = n_filters2, strides = 1, padding = 'SAME')
x5 = self._batch_norm(x4)
x6 = self._activation_relu(x5)
x7 = self._conv2d(x6, filter_size = 1, n_filters = n_filters3, strides = 1)
x8 = self._batch_norm(x7)
shortcut1 = self._conv2d(input, filter_size = 1, n_filters = n_filters3, strides = strides)
shortcut2 = self._batch_norm(shortcut1)
x9 = tf.add(x8, shortcut2)
x10 = self._activation_relu(x9)
return x10
def _flatten_layer(self, input):
h = int(input.shape[1])
w = int(input.shape[2])
d = int(input.shape[3])
return tf.reshape(input, [-1, h*w*d])
def _fully_connected_layer(self, input, n_outputs, activation = None, drop_rate = None):
n_inputs = int(input.shape[-1])
weights = self.new_Weight([n_inputs, n_outputs])
biases = self.new_Bias(n_outputs)
layer = tf.matmul(input, weights) + biases
if activation == 'softmax':
layer = tf.nn.softmax(layer)
elif activation == 'relu':
layer = tf.nn.relu(layer)
if drop_rate != None:
layer = tf.nn.dropout(layer, drop_rate)
tf.summary.histogram("weights", weights)
tf.summary.histogram("biases", biases)
tf.summary.histogram("layer", layer)
return layer
def _build_model(self):
# with tf.device('/gpu:0'):
self.input_padding = tf.pad(self.input_, [[0, 0], [3, 3], [3, 3], [0, 0]])
self.conv1 = self._conv2d(self.input_padding, filter_size = 7, n_filters = 64, strides = 2)
self.batch_norm1 = self._batch_norm(self.conv1)
self.activation1 = self._activation_relu(self.batch_norm1)
self.maxpooling1 = self._maxpooling2d_layer(self.activation1, size = 3, strides = 2)
self.conv_block2 = self._conv_block(self.maxpooling1, kernel_size = 3, filters = [64, 64, 256], strides = 1)
self.identity_block2a = self._identity_block(self.conv_block2, kernel_size = 3, filters = [64, 64, 256])
self.identity_block2b = self._identity_block(self.identity_block2a, kernel_size = 3, filters = [64, 64, 256])
self.conv_block3 = self._conv_block(self.identity_block2b, kernel_size = 3, filters = [128, 128, 512], strides = 2)
self.identity_block3a = self._identity_block(self.conv_block3, kernel_size = 3, filters = [128, 128, 512])
self.identity_block3b = self._identity_block(self.identity_block3a, kernel_size = 3, filters = [128, 128, 512])
self.identity_block3c = self._identity_block(self.identity_block3b, kernel_size = 3, filters = [128, 128, 512])
# self.conv_block4 = self._conv_block(self.identity_block3c, kernel_size = 3, filters = [256, 256, 1024], strides = 2)
# self.identity_block4a = self._identity_block(self.conv_block4, kernel_size = 3, filters = [256, 256, 1024])
# self.identity_block4b = self._identity_block(self.identity_block4a, kernel_size = 3, filters = [256, 256, 1024])
# self.identity_block4c = self._identity_block(self.identity_block4b, kernel_size = 3, filters = [256, 256, 1024])
# self.identity_block4d = self._identity_block(self.identity_block4c, kernel_size = 3, filters = [256, 256, 1024])
# self.identity_block4e = self._identity_block(self.identity_block4d, kernel_size = 3, filters = [256, 256, 1024])
# self.conv_block5 = self._conv_block(self.identity_block4e, kernel_size = 3, filters = [512, 512, 2048], strides = 2)
# self.identity_block5a = self._identity_block(self.conv_block5, kernel_size = 3, filters = [512, 512, 2048])
# self.identity_block5b = self._identity_block(self.identity_block5a, kernel_size = 3, filters = [512, 512, 2048])
# # self.avg_pool = tf.nn.avg_pool(self.identity_block5b, ksize = [1, 7, 7, 1], strides = [1, 2, 2, 1], padding = 'VALID')
self.flatten = self._flatten_layer(self.identity_block3c)
self.full1 = self._fully_connected_layer(self.flatten, 4096, 'relu', 0.5)
self.full2 = self._fully_connected_layer(self.full1, 4096, 'relu', 0.5)
self.full3 = self._fully_connected_layer(self.full2, self.n_classes, 'softmax')
# self.merged_summary = tf.summary.merge_all()
# self.writer = tf.summary.FileWriter("graph")
def _create_loss(self):
# self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = self.full3, labels = self.output))
self.loss = tf.reduce_mean(-tf.reduce_sum(self.output * tf.log(self.full3), reduction_indices=[1]))
def _create_optimizer(self):
# with tf.device('/gpu:0'):
self.optimizer = tf.train.AdamOptimizer(learning_rate= self.learning_rate).minimize(self.loss, global_step = self.global_step)
def _create_evaluater(self):
correct = tf.equal(tf.argmax(self.full3, 1), tf.argmax(self.output, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
def train_model(model, n_epoch, data):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# model.writer.add_graph(sess.graph)
for epoch in range(n_epoch):
batch = 0
total_loss = 0.0
accuracy = 0.0
n_batch_train = len(data.train.labels)/32 + 1
while (batch < n_batch_train):
x_train, y_train = data.train.next_batch(32)
print(batch)
feed_dict = {model.input: x_train, model.output: y_train}
loss, acc, _ = sess.run([model.loss, model.accuracy, model.optimizer], feed_dict = feed_dict)
accuracy += acc
total_loss += loss
batch += 1
print("Epoch {}: loss {}, train_acc:{}".format(epoch, total_loss, accuracy/batch))
batch = 0
n_batch_test = len(data.test.labels)/32 + 1
while (batch < n_batch_test):
x_test, y_test = data.test.next_batch(32)
feed_dict = {model.input: x_test, model.output: y_test}
acc = sess.run(model.accuracy, feed_dict = feed_dict)
accuracy += acc
batch += 1
print("test_acc:{}".format(accuracy/batch))
def main():
size = int(sys.argv[1])
n_epoch = int(sys.argv[2])
data = input_data.read_data_sets('data/MNIST/', one_hot=True)
model = Resnet(input_shape = (size, size, 1), n_classes = 10)
train_model(model, n_epoch, data)
if __name__ == '__main__':
main()