-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathffi.c
691 lines (645 loc) · 23.4 KB
/
ffi.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
/* -----------------------------------------------------------------------
ffi.c - Copyright (c) 2018 Brion Vibber
wasm32/emscripten Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
#include <stdint.h>
#include <emscripten/emscripten.h>
#ifdef DEBUG_F
#define LOG_DEBUG(args...) \
console.warn(`====LIBFFI(line __LINE__)`, args)
#else
#define LOG_DEBUG(args...)
#endif
#define EM_JS_MACROS(ret, name, args, body...) EM_JS(ret, name, args, body)
#define DEREF_U8(addr, offset) HEAPU8[addr + offset]
#define DEREF_S8(addr, offset) HEAP8[addr + offset]
#define DEREF_U16(addr, offset) HEAPU16[(addr >> 1) + offset]
#define DEREF_S16(addr, offset) HEAP16[(addr >> 1) + offset]
#define DEREF_U32(addr, offset) HEAPU32[(addr >> 2) + offset]
#define DEREF_S32(addr, offset) HEAP32[(addr >> 2) + offset]
#define DEREF_F32(addr, offset) HEAPF32[(addr >> 2) + offset]
#define DEREF_F64(addr, offset) HEAPF64[(addr >> 3) + offset]
#if WASM_BIGINT
// We have HEAPU64 in this case.
#define DEREF_U64(addr, offset) HEAPU64[(addr >> 3) + offset]
#define LOAD_U64(addr,offset) \
DEREF_U64(addr, offset)
#define STORE_U64(addr, offset, val) \
(DEREF_U64(addr, offset) = val)
#else
// No BigUint64Array, have to manually split / join lower and upper byte
#define BIGINT_LOWER(x) (Number((x) & BigInt(0xffffffff)) | 0)
#define BIGINT_UPPER(x) (Number((x) >> BigInt(32)) | 0)
#define BIGINT_FROM_PAIR(lower, upper) \
(BigInt(lower) | (BigInt(upper) << BigInt(32)))
#define LOAD_U64(addr, offset) \
BIGINT_FROM_PAIR(DEREF_U32(addr, offset*2), DEREF_U32(addr, offset*2 + 1))
#define STORE_U64(addr, offset, val) ( \
(DEREF_U32(addr, offset*2) = BIGINT_LOWER(val)), \
(DEREF_U32(addr, offset*2+1) = BIGINT_UPPER(val)) \
)
#endif
#define CIF__ABI(addr) DEREF_U32(addr, 0)
#define CIF__NARGS(addr) DEREF_U32(addr, 1)
#define CIF__ARGTYPES(addr) DEREF_U32(addr, 2)
#define CIF__RTYPE(addr) DEREF_U32(addr, 3)
#define CIF__NFIXEDARGS(addr) DEREF_U32(addr, 6)
#define FFI_TYPE__SIZE(addr) DEREF_U32(addr, 0)
#define FFI_TYPE__ALIGN(addr) DEREF_U16(addr + 4, 0)
#define FFI_TYPE__TYPEID(addr) DEREF_U16(addr + 6, 0)
#define FFI_TYPE__ELEMENTS(addr) DEREF_U32(addr + 8, 0)
#define ALIGN_ADDRESS(addr, align) (addr &= (~((align) - 1)))
#define STACK_ALLOC(stack, size, align) ((stack -= (size)), ALIGN_ADDRESS(stack, align))
// Pyodide needs to redefine this to support fpcast emulation
#define CALL_FUNC_PTR_DEFAULT(func, args...) \
wasmTable.get(func).apply(null, args)
#ifndef CALL_FUNC_PTR
#if PYODIDE_FPCAST
#define CALL_FUNC_PTR(func, args...) \
CALL_FUNC_PTR_DEFAULT(dyncallInvokeMap[func] || func, args)
#else
#define CALL_FUNC_PTR CALL_FUNC_PTR_DEFAULT
#endif
#endif
// Experimentation shows Emscripten supports at most 122 Js trampoline args.
#define MAX_ARGS 122
#include <stddef.h>
#define MAX_ALIGN 8
_Static_assert(MAX_ALIGN == __alignof__(max_align_t), "max_align_t must be 8");
#define VARARGS_FLAG 1
ffi_status FFI_HIDDEN
ffi_prep_cif_machdep(ffi_cif *cif)
{
// This is called after ffi_prep_cif_machdep_var so we need to avoid
// overwriting cif->nfixedargs.
if (!(cif->flags & VARARGS_FLAG))
cif->nfixedargs = cif->nargs;
if(cif->nargs > MAX_ARGS) {
return FFI_BAD_TYPEDEF;
}
if(cif->rtype->type == FFI_TYPE_COMPLEX){
return FFI_BAD_TYPEDEF;
}
for(int i = 0; i < cif->nargs; i++){
// If they put the COMPLEX type into a struct we won't notice, but whatever.
if(cif->arg_types[i]->type == FFI_TYPE_COMPLEX){
return FFI_BAD_TYPEDEF;
}
}
return FFI_OK;
}
ffi_status FFI_HIDDEN
ffi_prep_cif_machdep_var(ffi_cif *cif, unsigned nfixedargs, unsigned ntotalargs)
{
cif->flags |= VARARGS_FLAG;
cif->nfixedargs = nfixedargs;
// The varargs takes up one extra argument
if(cif->nfixedargs + 1 > MAX_ARGS){
return FFI_BAD_TYPEDEF;
}
return FFI_OK;
}
/**
* A Javascript helper function. This takes an argument typ which is a wasm
* pointer to an ffi_type object. It returns a pair a type and a type id.
*
* - If it is not a struct, return its type and its typeid field.
* - If it is a struct of size >= 2, return the type and its typeid (which
* will be FFI_TYPE_STRUCT)
* - If it is a struct of size 0, return FFI_TYPE_VOID (????? this is broken)
* - If it is a struct of size 1, replace it with the single field and apply
* the same logic again to that.
*
* By always unboxing structs up front, we can avoid messy casework later.
*/
EM_JS_MACROS(
void,
unbox_small_structs, (ffi_type type_ptr), {
var type_id = FFI_TYPE__TYPEID(type_ptr);
while (type_id === FFI_TYPE_STRUCT) {
var elements = FFI_TYPE__ELEMENTS(type_ptr);
var first_element = DEREF_U32(elements, 0);
if (first_element === 0) {
type_id = FFI_TYPE_VOID;
break;
} else if (DEREF_U32(elements, 1) === 0) {
type_ptr = first_element;
type_id = FFI_TYPE__TYPEID(first_element);
} else {
break;
}
}
return [type_ptr, type_id];
})
EM_JS_MACROS(
void,
ffi_call, (ffi_cif * cif, ffi_fp fn, void *rvalue, void **avalue),
{
var abi = CIF__ABI(cif);
var nargs = CIF__NARGS(cif);
var nfixedargs = CIF__NFIXEDARGS(cif);
var arg_types_ptr = CIF__ARGTYPES(cif);
var rtype_unboxed = unbox_small_structs(CIF__RTYPE(cif));
var rtype_ptr = rtype_unboxed[0];
var rtype_id = rtype_unboxed[1];
var orig_stack_ptr = stackSave();
var cur_stack_ptr = orig_stack_ptr;
var args = [];
// Does our onwards call return by argument or normally? We return by argument
// no matter what.
var ret_by_arg = false;
if (rtype_id === FFI_TYPE_COMPLEX) {
throw new Error('complex ret marshalling nyi');
}
if (rtype_id < 0 || rtype_id > FFI_TYPE_LAST) {
throw new Error('Unexpected rtype ' + rtype_id);
}
// If the return type is a struct with multiple entries or a long double, the
// function takes an extra first argument which is a pointer to return value.
// Conveniently, we've already received a pointer to return value, so we can
// just use this. We also mark a flag that we don't need to convert the return
// value of the dynamic call back to C.
if (rtype_id === FFI_TYPE_LONGDOUBLE || rtype_id === FFI_TYPE_STRUCT) {
args.push(rvalue);
ret_by_arg = true;
}
// Accumulate a Javascript list of arguments for the Javascript wrapper for
// the wasm function. The Javascript wrapper does a type conversion from
// Javascript to C automatically, here we manually do the inverse conversion
// from C to Javascript.
for (var i = 0; i < nfixedargs; i++) {
var arg_ptr = DEREF_U32(avalue, i);
var arg_unboxed = unbox_small_structs(DEREF_U32(arg_types_ptr, i));
var arg_type_ptr = arg_unboxed[0];
var arg_type_id = arg_unboxed[1];
// It's okay here to always use unsigned integers, when passed into a signed
// slot of the same size they get interpreted correctly.
switch (arg_type_id) {
case FFI_TYPE_INT:
case FFI_TYPE_SINT32:
case FFI_TYPE_UINT32:
case FFI_TYPE_POINTER:
args.push(DEREF_U32(arg_ptr, 0));
break;
case FFI_TYPE_FLOAT:
args.push(DEREF_F32(arg_ptr, 0));
break;
case FFI_TYPE_DOUBLE:
args.push(DEREF_F64(arg_ptr, 0));
break;
case FFI_TYPE_UINT8:
args.push(DEREF_U8(arg_ptr, 0));
break;
case FFI_TYPE_SINT8:
args.push(DEREF_S8(arg_ptr, 0));
break;
case FFI_TYPE_UINT16:
args.push(DEREF_U16(arg_ptr, 0));
break;
case FFI_TYPE_SINT16:
args.push(DEREF_S16(arg_ptr, 0));
break;
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
args.push(LOAD_U64(arg_ptr, 0));
break;
case FFI_TYPE_LONGDOUBLE:
// long double is passed as a pair of BigInts.
args.push(LOAD_U64(arg_ptr, 0));
args.push(LOAD_U64(arg_ptr, 1));
break;
case FFI_TYPE_STRUCT:
// Nontrivial structs are passed by pointer.
// Have to copy the struct onto the stack though because C ABI says it's
// call by value.
var size = FFI_TYPE__SIZE(arg_type_ptr);
var align = FFI_TYPE__ALIGN(arg_type_ptr);
STACK_ALLOC(cur_stack_ptr, size, align);
HEAP8.subarray(cur_stack_ptr, cur_stack_ptr+size).set(HEAP8.subarray(arg_ptr, arg_ptr + size));
args.push(cur_stack_ptr);
break;
case FFI_TYPE_COMPLEX:
throw new Error('complex marshalling nyi');
default:
throw new Error('Unexpected type ' + arg_type_id);
}
}
// Wasm functions can't directly manipulate the callstack, so varargs
// arguments have to go on a separate stack. A varags function takes one extra
// argument which is a pointer to where on the separate stack the args are
// located. Because stacks are allocated backwards, we have to loop over the
// varargs backwards.
//
// We don't have any way of knowing how many args were actually passed, so we
// just always copy extra nonsense past the end. The ownwards call will know
// not to look at it.
if (nfixedargs != nargs) {
var struct_arg_info = [];
for (var i = nargs - 1; i >= nfixedargs; i--) {
var arg_ptr = DEREF_U32(avalue, i);
var arg_unboxed = unbox_small_structs(DEREF_U32(arg_types_ptr, i));
var arg_type_ptr = arg_unboxed[0];
var arg_type_id = arg_unboxed[1];
switch (arg_type_id) {
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
STACK_ALLOC(cur_stack_ptr, 1, 1);
DEREF_U8(cur_stack_ptr, 0) = DEREF_U8(arg_ptr, 0);
break;
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
STACK_ALLOC(cur_stack_ptr, 2, 2);
DEREF_U16(cur_stack_ptr, 0) = DEREF_U16(arg_ptr, 0);
break;
case FFI_TYPE_INT:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_POINTER:
case FFI_TYPE_FLOAT:
STACK_ALLOC(cur_stack_ptr, 4, 4);
DEREF_U32(cur_stack_ptr, 0) = DEREF_U32(arg_ptr, 0);
break;
case FFI_TYPE_DOUBLE:
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
STACK_ALLOC(cur_stack_ptr, 8, 8);
DEREF_U32(cur_stack_ptr, 0) = DEREF_U32(arg_ptr, 0);
DEREF_U32(cur_stack_ptr, 1) = DEREF_U32(arg_ptr, 1);
break;
case FFI_TYPE_LONGDOUBLE:
STACK_ALLOC(cur_stack_ptr, 16, 8);
DEREF_U32(cur_stack_ptr, 0) = DEREF_U32(arg_ptr, 0);
DEREF_U32(cur_stack_ptr, 1) = DEREF_U32(arg_ptr, 1);
DEREF_U32(cur_stack_ptr, 2) = DEREF_U32(arg_ptr, 1);
DEREF_U32(cur_stack_ptr, 3) = DEREF_U32(arg_ptr, 1);
break;
case FFI_TYPE_STRUCT:
// Again, struct must be passed by pointer.
// But ABI is by value, so have to copy struct onto stack.
// Currently arguments are going onto stack so we can't put it there now. Come back for this.
STACK_ALLOC(cur_stack_ptr, 4, 4);
struct_arg_info.push([cur_stack_ptr, arg_ptr, FFI_TYPE__SIZE(arg_type_ptr), FFI_TYPE__ALIGN(arg_type_ptr)]);
break;
case FFI_TYPE_COMPLEX:
throw new Error('complex arg marshalling nyi');
default:
throw new Error('Unexpected argtype ' + arg_type_id);
}
}
// extra normal argument which is the pointer to the varargs.
args.push(cur_stack_ptr);
// TODO: What does this mean?
// Now allocate variable struct args on stack too.
for(var i = 0; i < struct_arg_info.length; i++) {
var struct_info = struct_arg_info[i];
var arg_target = struct_info[0];
var arg_ptr = struct_info[1];
var size = struct_info[2];
var align = struct_info[3];
STACK_ALLOC(cur_stack_ptr, size, align);
HEAP8.subarray(cur_stack_ptr, cur_stack_ptr+size).set(HEAP8.subarray(arg_ptr, arg_ptr + size));
DEREF_U32(arg_target, 0) = cur_stack_ptr;
}
}
STACK_ALLOC(cur_stack_ptr, 0, MAX_ALIGN);
stackRestore(cur_stack_ptr);
LOG_DEBUG("CALL_FUNC_PTR", fn, args);
var result = CALL_FUNC_PTR(fn, args);
// Put the stack pointer back (we moved it if we made a varargs call)
stackRestore(orig_stack_ptr);
// We need to return by argument. If return value was a nontrivial struct or
// long double, the onwards call already put the return value in rvalue
if (ret_by_arg) {
return;
}
// Otherwise the result was automatically converted from C into Javascript and
// we need to manually convert it back to C.
switch (rtype_id) {
case FFI_TYPE_VOID:
break;
case FFI_TYPE_INT:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_POINTER:
DEREF_U32(rvalue, 0) = result;
break;
case FFI_TYPE_FLOAT:
DEREF_F32(rvalue, 0) = result;
break;
case FFI_TYPE_DOUBLE:
DEREF_F64(rvalue, 0) = result;
break;
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
DEREF_U8(rvalue, 0) = result;
break;
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
DEREF_U16(rvalue, 0) = result;
break;
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
STORE_U64(rvalue, 0, result);
break;
case FFI_TYPE_COMPLEX:
throw new Error('complex ret marshalling nyi');
default:
throw new Error('Unexpected rtype ' + rtype_id);
}
});
#define CLOSURE__wrapper(addr) DEREF_U32(addr, 0)
#define CLOSURE__cif(addr) DEREF_U32(addr, 1)
#define CLOSURE__fun(addr) DEREF_U32(addr, 2)
#define CLOSURE__user_data(addr) DEREF_U32(addr, 3)
EM_JS_MACROS(void *, ffi_closure_alloc_helper, (size_t size, void **code), {
var closure = _malloc(size);
var index = getEmptyTableSlot();
DEREF_U32(code, 0) = index;
CLOSURE__wrapper(closure) = index;
return closure;
})
void * __attribute__ ((visibility ("default")))
ffi_closure_alloc(size_t size, void **code) {
return ffi_closure_alloc_helper(size, code);
}
EM_JS_MACROS(void, ffi_closure_free_helper, (void *closure), {
var index = CLOSURE__wrapper(closure);
freeTableIndexes.push(index);
_free(closure);
})
void __attribute__ ((visibility ("default")))
ffi_closure_free(void *closure) {
return ffi_closure_free_helper(closure);
}
EM_JS_MACROS(
ffi_status,
ffi_prep_closure_loc_helper,
(ffi_closure * closure, ffi_cif *cif, void *fun, void *user_data, void *codeloc),
{
var abi = CIF__ABI(cif);
var nargs = CIF__NARGS(cif);
var nfixedargs = CIF__NFIXEDARGS(cif);
var arg_types_ptr = CIF__ARGTYPES(cif);
var rtype_unboxed = unbox_small_structs(CIF__RTYPE(cif));
var rtype_ptr = rtype_unboxed[0];
var rtype_id = rtype_unboxed[1];
// First construct the signature of the javascript trampoline we are going to create.
// Important: this is the signature for calling us, the onward call always has sig viiii.
var sig;
var ret_by_arg = false;
switch (rtype_id) {
case FFI_TYPE_VOID:
sig = 'v';
break;
case FFI_TYPE_STRUCT:
case FFI_TYPE_LONGDOUBLE:
// Return via a first pointer argument.
sig = 'vi';
ret_by_arg = true;
break;
case FFI_TYPE_INT:
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_POINTER:
sig = 'i';
break;
case FFI_TYPE_FLOAT:
sig = 'f';
break;
case FFI_TYPE_DOUBLE:
sig = 'd';
break;
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
sig = 'j';
break;
case FFI_TYPE_COMPLEX:
throw new Error('complex ret marshalling nyi');
default:
throw new Error('Unexpected rtype ' + rtype_id);
}
var unboxed_arg_type_id_list = [];
var unboxed_arg_type_info_list = [];
for (var i = 0; i < nargs; i++) {
var arg_unboxed = unbox_small_structs(DEREF_U32(arg_types_ptr, i));
var arg_type_ptr = arg_unboxed[0];
var arg_type_id = arg_unboxed[1];
unboxed_arg_type_id_list.push(arg_type_id);
unboxed_arg_type_info_list.push([FFI_TYPE__SIZE(arg_type_ptr), FFI_TYPE__ALIGN(arg_type_ptr)]);
}
for (var i = 0; i < nfixedargs; i++) {
switch (unboxed_arg_type_id_list[i]) {
case FFI_TYPE_INT:
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_POINTER:
case FFI_TYPE_STRUCT:
sig += 'i';
break;
case FFI_TYPE_FLOAT:
sig += 'f';
break;
case FFI_TYPE_DOUBLE:
sig += 'd';
break;
case FFI_TYPE_LONGDOUBLE:
sig += 'jj';
break;
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
sig += 'j';
break;
case FFI_TYPE_COMPLEX:
throw new Error('complex marshalling nyi');
default:
throw new Error('Unexpected argtype ' + arg_type_id);
}
}
if (nfixedargs < nargs) {
// extra pointer to varargs stack
sig += "i";
}
LOG_DEBUG("CREATE_CLOSURE", "sig:", sig);
function trampoline() {
var args = Array.prototype.slice.call(arguments);
var size = 0;
var orig_stack_ptr = stackSave();
var cur_ptr = orig_stack_ptr;
var ret_ptr;
var jsarg_idx = 0;
// Should we return by argument or not? The onwards call returns by argument
// no matter what. (Warning: ret_by_arg means the opposite in ffi_call)
if (ret_by_arg) {
ret_ptr = args[jsarg_idx++];
} else {
// We might return 4 bytes or 8 bytes, allocate 8 just in case.
STACK_ALLOC(cur_ptr, 8, 8);
ret_ptr = cur_ptr;
}
cur_ptr -= 4 * nargs;
var args_ptr = cur_ptr;
var carg_idx = -1;
// Here we either have the actual argument, or a pair of BigInts for long
// double, or a pointer to struct. We have to store into args_ptr[i] a
// pointer to the ith argument. If the argument is a struct, just store the
// pointer. Otherwise allocate stack space and copy the js argument onto the
// stack.
for (var carg_idx = 0; carg_idx < nfixedargs; carg_idx++ ) {
// jsarg_idx might start out as 0 or 1 depending on ret_by_arg
// it advances an extra time for long double
var cur_arg = args[jsarg_idx++];
var arg_type_info = unboxed_arg_type_info_list[carg_idx];
var arg_size = arg_type_info[0];
var arg_align = arg_type_info[1];
var arg_type_id = unboxed_arg_type_id_list[carg_idx];
switch (arg_type_id) {
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
// Bad things happen if we don't align to 4 here
STACK_ALLOC(cur_ptr, 1, 4);
DEREF_U32(args_ptr, carg_idx) = cur_ptr;
DEREF_U8(cur_ptr, 0) = cur_arg;
break;
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
// Bad things happen if we don't align to 4 here
STACK_ALLOC(cur_ptr, 2, 4);
DEREF_U32(args_ptr, carg_idx) = cur_ptr;
DEREF_U16(cur_ptr, 0) = cur_arg;
break;
case FFI_TYPE_INT:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_POINTER:
STACK_ALLOC(cur_ptr, 4, 4);
DEREF_U32(args_ptr, carg_idx) = cur_ptr;
DEREF_U32(cur_ptr, 0) = cur_arg;
break;
case FFI_TYPE_STRUCT:
// cur_arg is already a pointer to struct
// copy it onto stack to pass by value
STACK_ALLOC(cur_ptr, arg_size, arg_align);
HEAP8.subarray(cur_ptr, cur_ptr + arg_size).set(HEAP8.subarray(cur_arg, cur_arg + arg_size));
DEREF_U32(args_ptr, carg_idx) = cur_ptr;
break;
case FFI_TYPE_FLOAT:
STACK_ALLOC(cur_ptr, 4, 4);
DEREF_U32(args_ptr, carg_idx) = cur_ptr;
DEREF_F32(cur_ptr, 0) = cur_arg;
break;
case FFI_TYPE_DOUBLE:
STACK_ALLOC(cur_ptr, 8, 8);
DEREF_U32(args_ptr, carg_idx) = cur_ptr;
DEREF_F64(cur_ptr, 0) = cur_arg;
break;
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
STACK_ALLOC(cur_ptr, 8, 8);
DEREF_U32(args_ptr, carg_idx) = cur_ptr;
STORE_U64(cur_ptr, 0, cur_arg);
break;
case FFI_TYPE_LONGDOUBLE:
STACK_ALLOC(cur_ptr, 16, 8);
DEREF_U32(args_ptr, carg_idx) = cur_ptr;
STORE_U64(cur_ptr, 0, cur_arg);
cur_arg = args[jsarg_idx++];
STORE_U64(cur_ptr, 1, cur_arg);
break;
}
}
// If its a varargs call, last js argument is a pointer to the varargs.
var varargs = args[args.length - 1];
// We have no way of knowing how many varargs were actually provided, this
// fills the rest of the stack space allocated with nonsense. The onward
// call will know to ignore the nonsense.
// We either have a pointer to the argument if the argument is not a struct
// or a pointer to pointer to struct. We need to store a pointer to the
// argument into args_ptr[i]
for (var carg_idx = nfixedargs; carg_idx < nargs; carg_idx++) {
var arg_type_id = unboxed_arg_type_id_list[carg_idx];
var arg_type_info = unboxed_arg_type_info_list[carg_idx];
var arg_size = arg_type_info[0];
var arg_align = arg_type_info[1];
if (arg_type_id === FFI_TYPE_STRUCT) {
// In this case varargs is a pointer to pointer to struct so we need to
// deref once
var struct_ptr = DEREF_U32(varargs, 0);
STACK_ALLOC(cur_ptr, arg_size, arg_align);
HEAP8.subarray(cur_ptr, cur_ptr + arg_size).set(HEAP8.subarray(struct_ptr, struct_ptr + arg_size));
DEREF_U32(args_ptr, carg_idx) = cur_ptr;
} else {
DEREF_U32(args_ptr, carg_idx) = varargs;
}
varargs += 4;
}
STACK_ALLOC(cur_ptr, 0, MAX_ALIGN);
stackRestore(cur_ptr);
LOG_DEBUG("CALL_CLOSURE", "closure:", closure, "fptr", CLOSURE__fun(closure), "cif", CLOSURE__cif(closure));
CALL_FUNC_PTR(CLOSURE__fun(closure), [
CLOSURE__cif(closure), ret_ptr, args_ptr,
CLOSURE__user_data(closure)
]);
stackRestore(orig_stack_ptr);
// If we aren't supposed to return by argument, figure out what to return.
if (!ret_by_arg) {
switch (sig[0]) {
case "i":
return DEREF_U32(ret_ptr, 0);
case "j":
return LOAD_U64(ret_ptr, 0);
case "d":
return DEREF_F64(ret_ptr, 0);
case "f":
return DEREF_F32(ret_ptr, 0);
}
}
}
try {
var wasm_trampoline = convertJsFunctionToWasm(trampoline, sig);
} catch(e) {
return FFI_BAD_TYPEDEF;
}
wasmTable.set(codeloc, wasm_trampoline);
CLOSURE__cif(closure) = cif;
CLOSURE__fun(closure) = fun;
CLOSURE__user_data(closure) = user_data;
return 0 /* FFI_OK */;
})
// EM_JS does not correctly handle function pointer arguments, so we need a
// helper
ffi_status ffi_prep_closure_loc(ffi_closure *closure, ffi_cif *cif,
void (*fun)(ffi_cif *, void *, void **, void *),
void *user_data, void *codeloc) {
if (cif->abi != FFI_WASM32_EMSCRIPTEN)
return FFI_BAD_ABI;
return ffi_prep_closure_loc_helper(closure, cif, (void *)fun, user_data,
codeloc);
}