-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhopfield.go
302 lines (248 loc) · 5.9 KB
/
hopfield.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
package main
import (
"errors"
"fmt"
"math/rand"
"time"
)
type Axon chan float32
type Neuron struct {
id int
weights map[*Neuron]float32 // Weights for input axons
inAxons map[*Neuron]Axon // Input axons
outAxons map[*Neuron]Axon // Output axons
v float32 // Electrical potential
vChan chan float32 // Channel for stimulate electrical potential
th float32 // Threshold
trainMode bool // If true neuron conducts training
}
func NewNeuron() *Neuron {
return &Neuron{
weights: map[*Neuron]float32{},
inAxons: map[*Neuron]Axon{},
outAxons: map[*Neuron]Axon{},
vChan: make(chan float32, 1),
}
}
// Connect connects axon between n and neuron
func (n *Neuron) Connect(neuron *Neuron) error {
var (
axon Axon
ok bool
)
fmt.Printf("Connectting between neuron %v to neuron %v\n", n.id, neuron.id)
// Inbound axon (from neuron to n)
axon, ok = n.inAxons[neuron]
if !ok {
n.inAxons[neuron] = make(chan float32, 1)
axon = n.inAxons[neuron]
}
if _, ok := neuron.outAxons[n]; ok {
return errors.New(fmt.Sprintf("Connection from neuron %v to neuron %v has already existed", neuron.id, n.id))
}
neuron.outAxons[n] = axon
// Outbound axon (from n to neuron)
axon, ok = neuron.inAxons[n]
if !ok {
neuron.inAxons[n] = make(chan float32, 1)
axon = neuron.inAxons[n]
}
if _, ok := n.outAxons[neuron]; ok {
return errors.New(fmt.Sprintf("Connection from neuron %v to neuron %v has already existed", n.id, neuron.id))
}
n.outAxons[neuron] = axon
return nil
}
// Feed feeds -1 or 1 to this neuron
func (n *Neuron) Feed(v float32) error {
if v != -1 && v != 1 {
return errors.New("Invalid feed value")
}
n.vChan <- v
// TODO: Add channel for notification feed has finisied
return nil
}
// Run runs neuron processes
func (n *Neuron) Run(iter int, finish chan bool) {
go n.run(iter, finish)
}
func (n *Neuron) run(iter int, finish chan bool) {
fmt.Printf("neuron %v : start\n", n.id)
if n.trainMode {
// Initialize weights to 0
for neuron := range n.weights {
n.weights[neuron] = 0
}
for it := 0; it < iter; it++ {
// Initialize electrical potential
n.v = <-n.vChan
for _, axon := range n.outAxons {
axon <- n.v
}
// Update weights by Hebb's rule
for neuron, axon := range n.inAxons {
n.weights[neuron] += n.v * <-axon
}
}
} else {
// Initialize electrical potential
n.v = <-n.vChan
for it := 0; it < iter; it++ {
fmt.Printf("neuron %v : it = %v\n", n.id, it)
for neuron, axon := range n.outAxons {
fmt.Printf("neuron %v : output to %v before\n", n.id, neuron.id)
axon <- n.v
fmt.Printf("neuron %v : output to %v after\n", n.id, neuron.id)
}
var s float32
for neuron, axon := range n.inAxons {
fmt.Printf("neuron %v : input from %v before\n", n.id, neuron.id)
s += n.weights[neuron] * <-axon
fmt.Printf("neuron %v : input from %v after\n", n.id, neuron.id)
}
s -= n.th
var v float32 = -1
if s > 0 {
v = 1
}
n.v = v
}
}
fmt.Printf("neuron %v : finish\n", n.id)
finish <- true
}
type Hopfield struct {
Neurons []*Neuron
}
func NewHopfield(numNeurons int) *Hopfield {
// Make neurons
neurons := make([]*Neuron, numNeurons)
for i := 0; i < numNeurons; i++ {
neurons[i] = NewNeuron()
neurons[i].id = i
}
// Make axons
for i := 0; i < numNeurons; i++ {
for j := i + 1; j < numNeurons; j++ {
err := neurons[i].Connect(neurons[j])
if err != nil {
fmt.Println(err.Error())
return nil
}
}
}
return &Hopfield{
Neurons: neurons,
}
}
func (h *Hopfield) Energy() float32 {
var (
e1 float32
e2 float32
)
for i := 0; i < len(h.Neurons); i++ {
for j := 0; j < len(h.Neurons); j++ {
u := h.Neurons[i]
v := h.Neurons[j]
e1 += u.weights[v] * u.v * v.v
}
}
e1 /= -2
for i := 0; i < len(h.Neurons); i++ {
u := h.Neurons[i]
e2 += u.th * u.v
}
return e1 + e2
}
func (h *Hopfield) Run(iter int) {
finish := make(chan bool, len(h.Neurons))
for _, neuron := range h.Neurons {
neuron.Run(iter, finish)
}
for i := 0; i < len(h.Neurons); i++ {
<-finish
}
}
func (h *Hopfield) Print(cols int) {
for i, neuron := range h.Neurons {
if i != 0 && i%cols == 0 {
fmt.Print("\n")
}
if neuron.v == -1 {
fmt.Print("○")
} else {
fmt.Print("●")
}
}
fmt.Print("\n")
}
func (h *Hopfield) Feed(pat []float32) error {
if len(pat) != len(h.Neurons) {
return errors.New("Pattern size must be same to hopfield")
}
for _, v := range pat {
if v != -1 && v != 1 {
return errors.New("Pattern value must be -1 or 1")
}
}
for i, neuron := range h.Neurons {
err := neuron.Feed(pat[i])
if err != nil {
return err
}
}
return nil
}
func (h *Hopfield) FeedRandomly() error {
rand.Seed(time.Now().Unix())
pat := make([]float32, len(h.Neurons))
for i := 0; i < len(pat); i++ {
pat[i] = float32(1 - 2*rand.Intn(2))
}
err := h.Feed(pat)
if err != nil {
return err
}
return nil
}
func (h *Hopfield) Train(pats [][]float32) error {
// Set all neurons as training mode
for _, neuron := range h.Neurons {
neuron.trainMode = true
}
for _, pat := range pats {
if len(pat) != len(h.Neurons) {
return errors.New("Pattern size must be same to hopfield")
}
for _, v := range pat {
if v != -1 && v != 1 {
return errors.New("Pattern value must be -1 or 1")
}
}
}
// Training
finish := make(chan bool, len(h.Neurons))
for _, neuron := range h.Neurons {
neuron.Run(len(pats), finish)
}
for _, pat := range pats {
for i, v := range pat {
h.Neurons[i].Feed(v)
}
}
for i := 0; i < len(h.Neurons); i++ {
<-finish
}
// Set all neurons as default mode
for _, neuron := range h.Neurons {
neuron.trainMode = false
}
return nil
}
func (h *Hopfield) SetWeights(i, j int, w float32) {
h.Neurons[i].weights[h.Neurons[j]] = w
h.Neurons[j].weights[h.Neurons[i]] = w
}
func (h *Hopfield) SetThreshold(i int, th float32) {
h.Neurons[i].th = th
}