-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinearalgebra.cpp
243 lines (205 loc) · 5.53 KB
/
linearalgebra.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/*
* Fengji Hou
* New York University
* This cpp file contains the LA related functions.
*
*/
//#include "/home/fh417/Projects_Local/CLAPACK-3.2.1/f2c.h"
//#include "/home/fh417/Projects_Local/CLAPACK-3.2.1/clapack.h"
#include <iostream>
#include <iomanip>
#include <fstream>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <limits>
#include <vector>
#include "exception.h"
#include "linearalgebra.h"
using namespace std;
bool symmetric (const vector< vector<double> > & C) {
if (C.size() != C[0].size()) {
cerr << "num of rows != num of columns" << endl;
return 0;
}
if (C.size() == 0) {
cerr << "nothing in the matrix" << endl;
return 0;
}
if (C.size() == 1) {
cout << "scalar matrix" << endl;
return 1;
}
for (size_t i = 0; i < C.size(); ++i) {
for (size_t j = i+1; j < C.size(); ++j) {
if (fabs(C[i][j] - C[j][i]) > fabs(C[i][j])*1.e-17) {
cerr << "not symmetric" << endl;
return 0;
}
}
}
return 1;
}
// dumb version of matrix multiplication
int matrix_multiplication ( vector< vector<double> > & A,
vector< vector<double> > & B,
vector< vector<double> > & C) {
if ( A.size() == 0 || B.size() == 0) {
cerr << "matrix_multiplication: empty matrix." << endl;
return 0;
}
if ( A[0].size() != B.size() ) {
cerr << "matrix_multiplication: num col of A != num row of B!" << endl;
return -1;
}
C.clear();
C.resize( A.size(), vector<double>(B[0].size(), 0) );
for (size_t i = 0; i < C.size(); ++i) {
for (size_t j = 0; j < C[0].size(); ++j) {
for (size_t k = 0; k < A[0].size(); ++k) {
C[i][j] += A[i][k] * B[k][j];
}
}
}
return 1;
}
int matrix_transpose( vector< vector<double> > & A,
vector< vector<double> > & At) {
if ( A.size() == 0) {
cerr << "matrix_transpose: empty matrix." << endl;
return 0;
}
At.clear();
At.resize( A[0].size(), vector<double>(A.size(), 0.) );
for (size_t i = 0; i < At.size(); ++i) {
for (size_t j = 0; j < At[0].size(); ++j) {
At[i][j] = A[j][i];
}
}
return 1;
}
int matrix_cholesky( const vector< vector<double> > & A,
vector< vector<double> > & R,
char uplo) {
if (A.size() != A[0].size()) {
cerr << "matrix_cholesky: Matrix Not Square!" << endl;
return 0;
}
long N = A.size(); // dimension of the matrix
R.clear();
R.resize( N, vector<double>(N, 0.) );
for (size_t i = 0; i < N; ++i) {
for (size_t j = i; j < N; ++j) {
if ( i != j && A[i][j] != A[j][i] ) {
cerr << "matrix_cholesky: Matrix Not Symmetric!" << endl;
return 0;
}
R[i][j] = A[i][j];
}
}
for (size_t i = 0; i < N; ++i) {
for (size_t j = i+1; j < N; ++j) {
for (size_t k = j; k < N; ++k) {
R[j][k] = R[j][k] - R[i][k] * R[i][j] / R[i][i];
}
}
double Rii = R[i][i];
if (Rii < 0.) {
cerr << "matrix_cholesky: Matrix Not Positive Definite!" << endl;
return 0;
}
for (size_t j = i; j < N; ++j) {
R[i][j] = R[i][j] / sqrt(Rii);
}
}
if (uplo == 'U' || uplo == 'u') {
return 1;
}
if (uplo == 'L' || uplo == 'l') {
for (size_t i = 0; i < N; ++i) {
for (size_t j = i+1; j < N; ++j) {
R[j][i] = R[i][j];
R[i][j] = 0.;
}
}
return 1;
}
cout << "uplo " << uplo << " not understood, upper triangle returned!" << endl;
return 2;
}
// log determinant of matrix C
double matrix_log_determinant ( const vector< vector<double> > & C ) {
if (C.size() != C[0].size()) {
throw Exception("matrix_log_determinant: Matrix Not Square!");
}
long N = C.size(); // dim of the matrix
vector< vector<double> > R;
char UPLO = 'U';
int info = matrix_cholesky(C, R, UPLO);
if(info <= 0) {
throw Exception("matrix_log_determinant: Cholesky Factorization Failed!");
}
double log_det = 0.;
for (size_t i = 0; i < N; ++i) {
log_det += log(R[i][i]) * 2.;
}
return log_det;
}
int matrix_inverse_triangular ( const vector< vector<double> > & R,
vector< vector<double> > & X,
char uplo) {
if (R.size() != R[0].size()) {
throw Exception("matrix_inverse_triangle: Matrix Not Square!");
}
if ( !( uplo=='U' || uplo=='u' || uplo=='L' || uplo=='l' ) ) {
throw Exception("matrix_inverse_triangle: uplo not understood!");
}
size_t N = R.size();
X.clear();
X.resize( N, vector<double>(N, 0.) );
if ( uplo == 'U' || uplo == 'u' ) {
for (long k = 0; k < N; ++k) {
for (long i = N-1; i >= 0; --i) {
X[i][k] = (k==i)?(1.):(0.);
for (long j = i+1; j < N; ++j) {
X[i][k] -= R[i][j] * X[j][k];
}
X[i][k] /= R[i][i];
}
}
}
if ( uplo == 'L' || uplo == 'l' ) {
for (size_t k = 0; k < N; ++k) {
for (size_t i = 0; i < N; ++i) {
X[i][k] = (k==i)?(1.):(0.);
for (size_t j = 0; j < i; ++j) {
X[i][k] -= R[i][j] * X[j][k];
}
X[i][k] /= R[i][i];
}
}
}
return 1;
}
int matrix_inverse_cholesky ( const vector< vector<double> > & A,
vector< vector<double> > & invA) {
if (A.size() != A[0].size()) {
cerr << "matrix_inverse_cholesky: Matrix Not Square!" << endl;
return 0;
}
vector< vector<double> > R, invR, invRt;
matrix_cholesky(A, R, 'U');
matrix_inverse_triangular(R, invR, 'U');
matrix_transpose(invR, invRt);
matrix_multiplication(invR, invRt, invA);
return 1;
}
void matrix_display (const vector< vector<double> > & A) {
for (size_t i = 0; i < A.size(); ++i) {
for (size_t j = 0; j < A[0].size(); ++j) {
cout << setw(15) << setprecision(10) << A[i][j];
}
cout << endl;
}
}