-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
178 lines (157 loc) · 5.56 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/*
* main.cpp
*/
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#include "acor.h"
#include "covariance.h"
#include "data.h"
#include "exception.h"
#include "exoplanetjd.h"
#include "int2str.h"
#include "linearalgebra.h"
#include "mean.h"
#include "model.h"
#include "orbcrocor.h"
#include "record.h"
#include "rng.h"
#include "rosenbrock.h"
#include "sampling.h"
#include "samplingmc.h"
#include "var.h"
using namespace std;
int read_beta (Model & model, const string & filename, const int head);
int main(void) {
time_t begin = time(NULL);
init_genrand(begin);
time_t end;
string data_file_name("data1"); size_t num_comp = 1; size_t ens_size = 100; size_t step_size = 5;
Data data(data_file_name);
ExoplanetJD model(data, num_comp);
cout << model.model_name << endl;
vector< vector<double> > ensemble;
double ini = 0.00001;
model.init(ens_size, ensemble, ini);
cout << "Normalizatin = " << exp(model.LnNorm) << endl;
step_size = 10;
size_t num_burn = (1+num_comp)*4000;
size_t num_cycle = (1+num_comp)*20000;
double aa = 2;
//cout << " Sample LnPosterior = " << model.LnPosterior(ensemble[0]) << endl;
model.init(ens_size, ensemble, ini);
OrbCroCor(model, ensemble, step_size, num_burn, num_cycle, aa);
model.init(ens_size, ensemble, ini);
findMeanCov(model, ensemble, step_size, num_burn, num_cycle, aa);
//cout << model.LnNorm - model.LnPermutation << endl;
try {
matrix_inverse_cholesky(model.C, model.H);
}
catch (Exception & e) {
cout << "Inverse of Covariance Failed:" << endl;
cout << e.ExceptionMessage() << endl;
}
//model.displayHessian();
try {
model.log_det_C = matrix_log_determinant(model.C);
}
catch (Exception & e) {
cout << "Determinant of Covariance Calculation Failed:" << endl;
cout << e.ExceptionMessage() << endl;
}
vector<double> maximum_likelihood(model.dim, 0.);
for (size_t i = 0; i < model.dim; ++i) {
maximum_likelihood[i] = model.best_fit[i];
}
model.bic_evi = 0.5 * model.dim * log(2.0*M_PI) + 0.5 * model.log_det_C + model.LnPosterior(maximum_likelihood);
size_t burn_in_step = 2000*(num_comp+1);
size_t num_step = 10000*(num_comp+1);
step_size = 10;
double a = 1.5; // tuning parameter of sampler
double C = 0.01; // beta increase variance control
double C_change = 0.6;
double C_later = 0.01; // beta increase variance control
double a_later = 1.2;
double db_inc = 1.e-3; // Delta beta accuracy
ini = 0.001;
fstream out;
out.open(("results_"+model.model_name+"_"+model.time_label+".txt").c_str(), ios::app | ios::out);
out << "burn-in steps: " << burn_in_step << endl;
out << "num of steps: " << num_step << endl;
out << "ensemble size: " << ens_size << endl;
out << "step size: " << step_size << endl;
out << "C: " << setprecision(16) << C << endl;
out << "a: " << a << endl;
out << "cutoff: " << C_change << endl;
out << "C_later: " << C_later << endl;
out << "a_labter: " << a_later << endl;
out << "K_min: " << model.hyper.uniOrbB[0][0] << endl;
out << "K_max: " << model.hyper.uniOrbB[0][1] << endl;
out << "omega_min: " << model.hyper.uniOrbB[1][0] << endl;
out << "omega_max: " << model.hyper.uniOrbB[1][1] << endl;
out << "BIC evidence: " << model.bic_evi << endl;
size_t i = 0;
double accptr = 0;
while( model.beta.back() < 1) {
++i;
if (model.beta.size() == 1) {
model.init(ens_size, ensemble, model.m, ini); // initializing ensemble
// longer burn-in for better mixing
new_beta(model, ensemble, burn_in_step*5, num_step, num_step*10, step_size, a, db_inc, C);
model.init(ens_size, ensemble, ini); // initializing ensemble
}
else {
if (model.beta.size() == 2) {
// Due to the re-initialization, longer burn-in is needed for the 2nd Delta beta.
new_beta(model, ensemble, burn_in_step*5/2, num_step, num_step*10, step_size, a, db_inc, C);
}
else {
if (model.beta.back() < C_change) {
accptr = new_beta(model, ensemble, burn_in_step, num_step, num_step*10, step_size, a, db_inc, C);
}
else {
accptr = new_beta(model, ensemble, burn_in_step*10, num_step, num_step*10, step_size, a_later, db_inc, C_later);
}
}
}
record(model, out);
}
out << "Number of Inc : " << model.chain_evi.size()-1 << endl;
out << "Log Evidence : " << model.bic_evi + model.chain_evi.back() << endl;
out << "Relative Error: " << sqrt(model.chain_evi.size()-1)*C << endl;
end = time(NULL);
out << "Time Used: " << end-begin << " seconds!" << endl;
//fstream aout;
//aout.close();
//aout.open(("resultmc_"+model.model_name+"_"+"2013"+".txt").c_str(), ios::app | ios::out);
//aout << setprecision(16) << model.chain_evi.back() << " " << logSTD << " " << model.chain_evi.size()-1 << " " << C << " " << ens_size*num_step << endl;
//aout.close();
}
int read_beta (Model & model, const string & filename, const int head) {
fstream in;
in.open(filename.c_str(), ios::in);
if (in.fail()) {
return 0;
}
string temporary; // temporary string used to store the line read by getline()
for (int i = 0; i < head; ++i) {
getline( in, temporary );
}
double temp[6];
do {
if (in >> temp[0] >> temp[1] >> temp[2] >> temp[3] >> temp[4] >> temp[5] ) {
model.beta.push_back(temp[0]);
model.chain_evi.push_back(temp[1]);
model.chain_C.push_back(temp[3]);
model.chain_R.push_back(temp[4]);
model.tau.push_back(temp[5]);
}
}while(!in.eof());
return 1;
}