-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhcomp_paper.agda
308 lines (256 loc) · 8.32 KB
/
hcomp_paper.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
-- Following A CUBICAL TYPE THEORY FOR HIGHER INDUCTIVE TYPES
-- by Simon Huber at https://simhu.github.io/misc/hcomp.pdf
-- as closely as possible.
open import Cubical.Core.Primitives
open import Cubical.Core.Glue
import Agda.Builtin.Cubical.HCompU as HCompU
open HCompU using (primFaceForall)
open HCompU.Helpers using (refl)
private
variable
ℓ ℓ₁ : Level
ℓ′ ℓ₁′ : I → Level
-- Section 2 : New Primitives
-- This is just a special case of transp where φ = i0. I include it as it
-- has a far simpler type.
transport : (A : ∀ i → Type (ℓ′ i)) → A i0 → A i1
transport A u₀ = transp A i0 u₀
transp' :
(φ : I)
{ℓ' : I → Level [ φ ↦ (λ _ → ℓ) ]}
{a : PartialP φ (λ _ → Type ℓ)}
(A : (i : I) → Type (outS (ℓ' i)) [ φ ↦ (λ { (φ = i1) → a 1=1 }) ])
(u₀ : outS (A i0))
→ outS (A i1) [ φ ↦ (λ { (φ = i1) → u₀ }) ]
transp' φ A u₀ = inS (transp (λ i → outS (A i)) φ u₀)
transportFill :
(A : ∀ i → Type (ℓ′ i))
(u₀ : A i0)
(i : I)
→ A i
transportFill A u₀ i = transp (λ j → A (i ∧ j)) (~ i) u₀
-- Note that I fix the universe of A to make the type simpler. From now on we
-- are going to do that for all code involving transp where φ is not just i0.
transpFill :
(φ : I)
{a : Partial φ (Type ℓ)}
(A : I → Type ℓ [ φ ↦ a ])
(u₀ : outS (A i0))
(i : I)
→ outS (A i)
transpFill φ A u₀ i = transp (λ j → outS (A (i ∧ j))) (φ ∨ ~ i) u₀
forward :
(A : ∀ i → Type (ℓ′ i))
(r : I)
(u : A r)
→ A i1
forward A r u = transp (λ i → A (i ∨ r)) r u
hcomp' :
{A : Type ℓ}
{φ : I}
(u : ∀ i → Partial φ A)
(u₀ : A [ φ ↦ u i0 ])
→ A [ φ ↦ u i1 ]
hcomp' u u₀ = inS (hcomp u (outS u₀))
module Comp
(A : ∀ i → Type (ℓ′ i))
{φ : I}
(u : ∀ i → Partial φ (A i))
(u₀ : A i0 [ φ ↦ u i0 ])
where
comp' : A i1 [ φ ↦ u i1 ]
comp' =
inS
(hcomp
(λ i o → forward A i (u i o))
(forward A i0 (outS u₀)))
compId : comp A {φ = φ} u (outS u₀) ≡ outS comp'
compId = refl
-- Section 3 : Recursive definition of transport
data ℕ : Type where
zero : ℕ
suc : ℕ → ℕ
transpZeroId : (φ : I) → transp (λ _ → ℕ) φ zero ≡ zero
transpZeroId φ = refl
transpSucId : (φ : I) (u₀ : ℕ)
→ transp (λ _ → ℕ) φ (suc u₀) ≡ suc (transp (λ _ → ℕ) φ u₀)
transpSucId φ u₀ = refl
transpℕId : (φ : I) (u₀ : ℕ) → transp (λ _ → ℕ) φ u₀ ≡ u₀
transpℕId φ u₀ = refl
transportPathPId :
(A : (i j : I) → Type (ℓ′ i))
(v : (i : I) → A i i0)
(w : (i : I) → A i i1)
(u₀ : PathP (A i0) (v i0) (w i0))
→ transport (λ i → PathP (A i) (v i) (w i)) u₀
≡ λ j → comp
(λ i → A i j)
(λ i → λ
{ (j = i0) → v i
; (j = i1) → w i })
(u₀ j)
transportPathPId A v w u₀ = refl
transpPathPId :
(φ : I)
{a : I → Partial φ (Type ℓ)}
(A : (i j : I) → Type ℓ [ φ ↦ a j ])
{vφ : PartialP φ (a i0)}
(v : (i : I) → outS (A i i0) [ φ ↦ (λ { (φ = i1) → vφ 1=1 }) ])
{wφ : PartialP φ (a i1)}
(w : (i : I) → outS (A i i1) [ φ ↦ (λ { (φ = i1) → wφ 1=1 }) ])
(u₀ : PathP (λ j → outS (A i0 j)) (outS (v i0)) (outS (w i0)))
→ transp (λ i → PathP (λ j → outS (A i j)) (outS (v i)) (outS (w i))) φ u₀
≡ λ j → comp
(λ i → outS (A i j))
(λ i → λ
{ (φ = i1) → u₀ j
; (j = i0) → outS (v i)
; (j = i1) → outS (w i) })
(u₀ j)
transpPathPId φ A v w u₀ = refl
transportΣId :
(A : ∀ i → Type (ℓ′ i))
(B : ∀ i → A i → Type (ℓ₁′ i))
(u₀ : Σ (A i0) (B i0))
→ transport (λ i → Σ (A i) (B i)) u₀
≡ (transport A (u₀ .fst) ,
let v = transportFill A (u₀ .fst)
in transport (λ i → B i (v i)) (u₀ .snd))
transportΣId A B u₀ = refl
transpΣId :
(φ : I)
{a : Partial φ (Type ℓ)}
(A : I → Type ℓ [ φ ↦ a ])
{b : Partial φ (Type ℓ₁)}
(B : (i : I) → outS (A i) → Type ℓ₁ [ φ ↦ b ])
(u₀ : Σ (outS (A i0)) (λ x → outS (B i0 x)))
→ transp (λ i → Σ (outS (A i)) (λ x → outS (B i x))) φ u₀
≡ (transp (λ i → outS (A i)) φ (u₀ .fst) ,
let v = transpFill φ A (u₀ .fst)
in transp (λ i → outS (B i (v i))) φ (u₀ .snd))
transpΣId φ A B u₀ = refl
transportΠId :
(A : ∀ i → Type (ℓ′ i))
(B : ∀ i → A i → Type (ℓ₁′ i))
(u₀ : (x : A i0) → B i0 x)
→ transport (λ i → (x : A i) → B i x) u₀
≡ λ v →
let
w : (i : I) → A i
w i = transportFill (λ j → A (~ j)) v (~ i)
in
transport (λ i → B i (w i)) (u₀ (w i0))
transportΠId A B u₀ = refl
transpΠId :
(φ : I)
{a : Partial φ (Type ℓ)}
(A : I → Type ℓ [ φ ↦ a ])
{b : Partial φ (Type ℓ₁)}
(B : (i : I) → outS (A i) → Type ℓ₁ [ φ ↦ b ])
(u₀ : ((x : outS (A i0)) → outS (B i0 x)))
→ transp (λ i → (x : outS (A i)) → outS (B i x)) φ u₀
≡ λ v →
let
w : (i : I) → outS (A i)
w i = transpFill φ (λ j → (A (~ j))) v (~ i)
in
transp (λ i → outS (B i (w i))) φ (u₀ (w i0))
transpΠId φ A B u₀ = refl
transpUniverseId : (φ : I) (A : Type ℓ) → transp (λ _ → Type ℓ) φ A ≡ A
transpUniverseId φ A = refl
module TransportGlue
(A : ∀ i → Type (ℓ′ i))
(φ : I → I)
(T : (i : I) → Partial (φ i) (Type (ℓ₁′ i)))
(w : (i : I) → PartialP (φ i) (λ o → T i o ≃ A i))
(u₀ : primGlue (A i0) (T i0) (w i0))
where
B : (i : I) → Type (ℓ₁′ i)
B i = primGlue (A i) (T i) (w i)
∀φ : I
∀φ = primFaceForall φ
t : (i : I) → PartialP ∀φ (λ { (∀φ = i1) → T i 1=1 })
t i (∀φ = i1) = {!!}
transportGlue : B i1
transportGlue = {!!}
transportGlueId : transport B u₀ ≡ transportGlue
transportGlueId = {!!}
-- Section 4 : Recursive Definition of Homogeneous Composition
hcompZeroId : {φ : I} → hcomp (λ i → λ { (φ = i1) → zero }) zero ≡ zero
hcompZeroId = refl
hcompSucId :
{φ : I}
(u : I → Partial φ ℕ)
(u₀ : ℕ [ φ ↦ u i0 ])
→ hcomp (λ i o → suc (u i o)) (suc (outS u₀)) ≡ suc (hcomp u (outS u₀))
hcompSucId u u₀ = refl
hcompPathPId :
(A : I → Type ℓ)
(v : A i0)
(w : A i1)
{φ : I}
(u : I → Partial φ (PathP A v w))
(u₀ : PathP A v w [ φ ↦ u i0 ])
→ hcomp u (outS u₀)
≡ λ j →
hcomp
(λ i → λ { (φ = i1) → u i 1=1 j ; (j = i0) → v ; (j = i1) → w })
(outS u₀ j)
hcompPathPId A v w u u₀ = refl
hcompΣId :
(A : Type ℓ)
(B : (x : A) → Type ℓ₁)
{φ : I}
(u : I → Partial φ (Σ A B))
(u₀ : Σ A B [ φ ↦ u i0 ])
→ hcomp u (outS u₀)
≡ let
v : (i : I) → A
-- should use hfill instead
v = fill (λ _ → A) (λ i o → u i o .fst) (inS (outS u₀ .fst))
in
(v i1 ,
comp (λ i → B (v i)) (λ i → λ { (φ = i1) → u i 1=1 .snd }) (outS u₀ .snd))
hcompΣId A B u u₀ = refl
hcompΠId :
(A : Type ℓ)
(B : (x : A) → Type ℓ₁)
{φ : I}
(u : I → Partial φ ((x : A) → B x))
(u₀ : ((x : A) → B x) [ φ ↦ u i0 ])
→ hcomp u (outS u₀)
≡ λ v → hcomp (λ i o → u i o v) (outS u₀ v)
hcompΠId A B u u₀ = refl
-- Unfortunately hcomp E (outS A) is not judgmentally equal to
-- outS (hcompUniverse E A) which I don't know why.
hcompUniverse :
{φ : I}
(E : I → Partial φ (Type ℓ))
(A : Type ℓ [ φ ↦ E i0 ])
→ Type ℓ [ φ ↦ E i1 ]
hcompUniverse {φ = φ} E A =
inS
(primGlue
(outS A)
(E i1)
(λ { (φ = i1) → lineToEquiv (λ i → E (~ i) 1=1) }))
module HcompGlue
(A : Type ℓ)
{φ : I}
(T : Partial φ (Type ℓ₁))
(w : PartialP φ (λ o → T o ≃ A))
{ψ : I}
(u : I → Partial ψ (primGlue A T w))
(u₀ : primGlue A T w [ ψ ↦ u i0 ])
where
t : (i : I) → PartialP φ T
t i (φ = i1) = hfill u u₀ i
a₁ : A
a₁ = hcomp (λ i → λ
{ (ψ = i1) → unglue φ (u i 1=1)
; (φ = i1) → w 1=1 .fst (t i 1=1) })
(unglue φ (outS u₀))
hcompGlue : primGlue A T w [ ψ ↦ u i1 ]
hcompGlue = inS (glue (t i1) a₁)
hcompGlueId : hcomp u (outS u₀) ≡ outS hcompGlue
hcompGlueId = refl