-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexp_Conv_imageNet_expDecay.lua
103 lines (84 loc) · 3.11 KB
/
exp_Conv_imageNet_expDecay.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
--
-- Copyright (c) 2016, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
require 'torch'
require 'paths'
require 'optim'
require 'nn'
local DataLoader = require 'dataloader'
local models = require 'models/init'
local Trainer = require 'train_expDecay'
local opts = require 'opts_imageNet'
local checkpoints = require 'checkpoints'
torch.setdefaulttensortype('torch.FloatTensor')
torch.setnumthreads(1)
local opt = opts.parse(arg)
torch.manualSeed(opt.manualSeed)
cutorch.manualSeedAll(opt.manualSeed)
-- Load previous checkpoint, if it exists
local checkpoint, optimState = checkpoints.latest(opt)
-- Create model
local model, criterion = models.setup(opt, checkpoint)
-- Data loading
local trainLoader, valLoader = DataLoader.create(opt)
-- The trainer handles the training loop and evaluation on validation set
print('--------strat to train---------')
local trainer = Trainer(model, criterion, opt, optimState)
if opt.testOnly then
local top1Err, top5Err = trainer:test(0, valLoader)
print(string.format(' * Results top1: %6.3f top5: %6.3f', top1Err, top5Err))
return
end
local startEpoch = checkpoint and checkpoint.epoch + 1 or opt.epochNumber
local bestTop1 = math.huge
local bestTop5 = math.huge
iteration=0
losses={}
train_accus={}
test_accus={}
train_accus_t5={}
test_accus_t5={}
losses_epoch={}
print(model)
results={}
for epoch = startEpoch, opt.nEpochs do
-- Train for a single epoch
local trainTop1, trainTop5, trainLoss = trainer:train(epoch, trainLoader)
train_accus[#train_accus+1]=100-trainTop1
train_accus_t5[#train_accus_t5+1]=100-trainTop5
losses_epoch[#losses_epoch+1]=trainLoss
-- Run model on validation set
local testTop1, testTop5 = trainer:test(epoch, valLoader)
test_accus[#test_accus+1]=100-testTop1
test_accus_t5[#test_accus_t5+1]=100-testTop5
local bestModel = false
if testTop1 < bestTop1 then
bestModel = true
bestTop1 = testTop1
bestTop5 = testTop5
print(' * Best model ', testTop1, testTop5)
end
for k,v in pairs(model:findModules('cudnn.Spatial_PN')) do
v:updateWeight()
end
print('traing evaluation: epoch='..epoch..'----train accu='..(100-trainTop1)..'------loss_epoch='..trainLoss)
results.opt=opt
--results.losses=losses
results.train_accus=train_accus
results.test_accus=test_accus
results.train_accus_t5=train_accus_t5
results.test_accus_t5=test_accus_t5
results.losses_epoch=losses_epoch
if opt.tenCrop then
torch.save('result_ED_'..opt.model..'_depth'..opt.depth..'_G'..opt.m_perGroup..'_LR'..opt.LR..'_'..opt.dataset..'_NE'..opt.nEpochs..'_tenCrop.dat', results)
else
torch.save('result_ED_'..opt.model..'_depth'..opt.depth..'_G'..opt.m_perGroup..'_LR'..opt.LR..'_'..opt.dataset..'_NE'..opt.nEpochs..'.dat', results)
end
-- checkpoints.save(epoch, model, trainer.optimState, bestModel)
end
print(string.format(' * Finished top1: %6.3f top5: %6.3f', bestTop1, bestTop5))