-
Notifications
You must be signed in to change notification settings - Fork 27.7k
/
Copy pathtest_modeling_qwen2_vl.py
497 lines (435 loc) · 20.5 KB
/
test_modeling_qwen2_vl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Qwen2-VL model."""
import gc
import unittest
import requests
from transformers import (
AutoProcessor,
Qwen2VLConfig,
Qwen2VLForConditionalGeneration,
is_torch_available,
is_vision_available,
)
from transformers.testing_utils import (
require_flash_attn,
require_torch,
require_torch_gpu,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
)
if is_torch_available():
import torch
else:
is_torch_greater_or_equal_than_2_0 = False
if is_vision_available():
from PIL import Image
class Qwen2VLVisionText2TextModelTester:
def __init__(
self,
parent,
batch_size=8,
seq_length=7,
num_channels=3,
ignore_index=-100,
image_size=28,
bos_token_id=0,
eos_token_id=1,
vision_start_token_id=151652,
image_token_id=151655,
video_token_id=151656,
hidden_act="silu",
hidden_size=32,
vocab_size=152064,
intermediate_size=37,
max_position_embeddings=512,
max_window_layers=3,
model_type="qwen2_vl",
num_attention_heads=4,
num_hidden_layers=3,
num_key_value_heads=2,
rope_theta=10000,
tie_word_embeddings=True,
is_training=True,
vision_config={
"depth": 2,
"embed_dim": 32,
"hidden_act": "quick_gelu",
"hidden_size": 32,
"mlp_ratio": 4,
"num_heads": 4,
"patch_size": 14,
"spatial_merge_size": 2,
"temporal_patch_size": 2,
},
rope_scaling={"type": "mrope", "mrope_section": [2, 1, 1]},
):
self.parent = parent
self.ignore_index = ignore_index
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.vision_start_token_id = vision_start_token_id
self.image_token_id = image_token_id
self.video_token_id = video_token_id
self.hidden_act = hidden_act
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.max_position_embeddings = max_position_embeddings
self.max_window_layers = max_window_layers
self.model_type = model_type
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.num_key_value_heads = num_key_value_heads
self.rope_theta = rope_theta
self.tie_word_embeddings = tie_word_embeddings
self.vision_config = vision_config
self.rope_scaling = rope_scaling
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.seq_length = seq_length
self.is_training = is_training
self.vocab_size = vocab_size
def get_config(self):
return Qwen2VLConfig(
hidden_size=self.hidden_size,
intermediate_size=self.intermediate_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
hidden_act=self.hidden_act,
max_position_embeddings=self.max_position_embeddings,
vision_config=self.vision_config,
model_type=self.model_type,
max_window_layers=self.max_window_layers,
rope_scaling=self.rope_scaling,
tie_word_embeddings=self.tie_word_embeddings,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
vision_start_token_id=self.vision_start_token_id,
image_token_id=self.image_token_id,
video_token_id=self.video_token_id,
vocab_size=self.vocab_size,
)
def prepare_config_and_inputs(self):
config = self.get_config()
patch_size = config.vision_config.patch_size
temporal_patch_size = config.vision_config.temporal_patch_size
pixel_values = floats_tensor(
[
self.batch_size * (self.image_size**2) // (patch_size**2),
self.num_channels * (patch_size**2) * temporal_patch_size,
]
)
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
vision_seqlen = pixel_values.shape[0] // self.batch_size // (self.vision_config["spatial_merge_size"] ** 2)
input_ids = ids_tensor([self.batch_size, self.seq_length - 1 + vision_seqlen], self.vocab_size)
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
input_ids[:, torch.arange(vision_seqlen, device=torch_device) + 1] = self.image_token_id
labels = torch.zeros(
(self.batch_size, self.seq_length - 1 + vision_seqlen),
dtype=torch.long,
device=torch_device,
)
patch_size = self.vision_config["patch_size"]
inputs_dict = {
"pixel_values": pixel_values,
"image_grid_thw": torch.tensor(
[[1, self.image_size // patch_size, self.image_size // patch_size]] * self.batch_size
),
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels,
}
return config, inputs_dict
def create_and_check_qwen2_vl_model_fp16_forward(
self, config, input_ids, pixel_values, attention_mask, image_grid_thw
):
model = Qwen2VLForConditionalGeneration(config=config)
model.to(torch_device)
model.half()
model.eval()
logits = model(
input_ids=input_ids,
attention_mask=attention_mask,
image_grid_thw=image_grid_thw,
pixel_values=pixel_values.to(torch.bfloat16),
return_dict=True,
)["logits"]
self.parent.assertFalse(torch.isnan(logits).any().item())
def create_and_check_qwen2_vl_model_fp16_autocast_forward(
self, config, input_ids, pixel_values, attention_mask, image_grid_thw
):
config.torch_dtype = torch.float16
model = Qwen2VLForConditionalGeneration(config=config)
model.to(torch_device)
model.eval()
with torch.autocast(device_type="cuda", dtype=torch.float16):
logits = model(
input_ids=input_ids,
attention_mask=attention_mask,
image_grid_thw=image_grid_thw,
pixel_values=pixel_values.to(torch.bfloat16),
return_dict=True,
)["logits"]
self.parent.assertFalse(torch.isnan(logits).any().item())
@require_torch
class Qwen2VLModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
"""
Model tester for `Qwen2VLForConditionalGeneration`.
"""
all_model_classes = (Qwen2VLForConditionalGeneration,) if is_torch_available() else ()
test_pruning = False
test_head_masking = False
def setUp(self):
self.model_tester = Qwen2VLVisionText2TextModelTester(self)
self.config_tester = ConfigTester(self, config_class=Qwen2VLConfig, has_text_modality=False)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="Feedforward chunking is not yet supported")
def test_feed_forward_chunking(self):
pass
@unittest.skip(reason="Generate needs input ids")
def test_inputs_embeds_matches_input_ids_with_generate(self):
pass
@unittest.skip(reason="CPU offload is not yet supported")
def test_cpu_offload(self):
pass
@unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
def test_disk_offload_bin(self):
pass
@unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
def test_disk_offload_safetensors(self):
pass
@unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
def test_model_parallelism(self):
pass
@unittest.skip(reason="Compile not yet supported because in Qwen2VL models")
def test_sdpa_can_compile_dynamic(self):
pass
@unittest.skip(reason="Compile not yet supported because in Qwen2VL models")
def test_sdpa_can_dispatch_on_flash(self):
pass
@unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0.")
def test_multi_gpu_data_parallel_forward(self):
pass
@unittest.skip(reason="We cannot configure to output a smaller model.")
def test_model_is_small(self):
pass
@require_torch
class Qwen2VLIntegrationTest(unittest.TestCase):
def setUp(self):
self.processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
self.messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What kind of dog is this?"},
],
}
]
url = "https://qianwen-res.oss-accelerate-overseas.aliyuncs.com/Qwen2-VL/demo_small.jpg"
self.image = Image.open(requests.get(url, stream=True).raw)
def tearDown(self):
gc.collect()
torch.cuda.empty_cache()
@slow
def test_small_model_integration_test(self):
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
inputs = self.processor(text=[text], images=[self.image], return_tensors="pt")
expected_input_ids = [151644, 8948, 198, 2610, 525, 264, 10950, 17847, 13, 151645, 198, 151644, 872, 198, 151652, 151655, 151655] # fmt: skip
assert expected_input_ids == inputs.input_ids[0].tolist()[:17]
expected_pixel_slice = torch.tensor(
[
[0.8792, 0.8792, 0.9084],
[1.1858, 1.1858, 1.2296],
[1.2004, 1.2004, 1.2150],
[1.4340, 1.4340, 1.4194],
[1.3902, 1.4048, 1.4194],
[1.5216, 1.5362, 1.5362],
],
dtype=torch.float32,
device="cpu",
)
assert torch.allclose(expected_pixel_slice, inputs.pixel_values[:6, :3], atol=3e-3)
# verify generation
inputs = inputs.to(torch_device)
output = model.generate(**inputs, max_new_tokens=30)
EXPECTED_DECODED_TEXT = "system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets"
self.assertEqual(
self.processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
def test_small_model_integration_test_batch(self):
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
inputs = self.processor(text=[text, text], images=[self.image, self.image], return_tensors="pt").to(
torch_device
)
# it should not matter whether two images are the same size or not
output = model.generate(**inputs, max_new_tokens=30)
EXPECTED_DECODED_TEXT = [
'system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular choices',
'system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets'
] # fmt: skip
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
def test_small_model_integration_test_batch_wo_image(self):
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
messages2 = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who are you?"},
]
text2 = self.processor.apply_chat_template(messages2, tokenize=False, add_generation_prompt=True)
inputs = self.processor(text=[text, text2], images=[self.image], padding=True, return_tensors="pt").to(
torch_device
)
# it should not matter whether two images are the same size or not
output = model.generate(**inputs, max_new_tokens=30)
EXPECTED_DECODED_TEXT = [
'system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets',
'system\nYou are a helpful assistant.\nuser\nWho are you?\nassistant\nI am Qwen, a large language model created by Alibaba Cloud. I am designed to assist with various tasks and answer questions to the best of my'
] # fmt: skip
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
def test_small_model_integration_test_batch_different_resolutions(self):
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
text2 = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
image2 = self.image.resize((224, 224))
inputs = self.processor(text=[text, text2], images=[self.image, image2], padding=True, return_tensors="pt").to(
torch_device
)
# it should not matter whether two images are the same size or not
output = model.generate(**inputs, max_new_tokens=30)
EXPECTED_DECODED_TEXT = [
"system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets",
"system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets",
]
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_flash_attn
@require_torch_gpu
def test_small_model_integration_test_batch_flashatt2(self):
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto",
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
inputs = self.processor(text=[text, text], images=[self.image, self.image], return_tensors="pt").to(
torch_device
)
# it should not matter whether two images are the same size or not
output = model.generate(**inputs, max_new_tokens=30)
EXPECTED_DECODED_TEXT = [
"system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets",
"system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets",
]
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True)[0],
self.processor.batch_decode(output, skip_special_tokens=True)[1],
)
@slow
@require_flash_attn
@require_torch_gpu
def test_small_model_integration_test_batch_wo_image_flashatt2(self):
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto",
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
messages2 = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who are you?"},
]
text2 = self.processor.apply_chat_template(messages2, tokenize=False, add_generation_prompt=True)
inputs = self.processor(text=[text, text2], images=[self.image], padding=True, return_tensors="pt").to(
torch_device
)
# it should not matter whether two images are the same size or not
output = model.generate(**inputs, max_new_tokens=30)
EXPECTED_DECODED_TEXT = [
"system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets",
"system\nYou are a helpful assistant.\nuser\nWho are you?\nassistant\nI am Qwen, a large language model created by Alibaba Cloud. I am designed to answer a wide range of questions and provide information on various topics",
]
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)