-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresults_analysis.py
233 lines (164 loc) · 5.26 KB
/
results_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# -*- coding: utf-8 -*-
"""
Created on Wed Jan 26 13:08:30 2022
@author: Hugo
"""
import numpy as np
import pickle
def get_y(indices, Y_dict):
ys = []
for i in indices:
ys.append(Y_dict[i])
return(ys)
def over_T(ys, thresh):
n = 0
for i in ys:
if i >= thresh:
n += 1
return(n)
def true_over_T(y_true,y_noise,thresh):
n = 0
for i in range(len(y_true)):
if y_true[i]>=thresh and np.amax(y_noise[i])>=thresh:
n += 1
return(n)
def actives_per_batch(learner, active_value=None):
if learner.batch_n <= 1:
print('Need to perfrom active learning first')
else:
if active_value is None:
active_value = learner.crit
hits = []
for j in learner.batch_details:
ys = get_y(j, learner.Y_true)
hits.append(over_T(ys, active_value))
return(hits)
def true_actives_per_batch(learner, active_value=None):
if learner.batch_n <= 1:
print('Need to perfrom active learning first')
else:
if active_value is None:
active_value = learner.crit
hits = []
for j in learner.batch_details:
y1 = get_y(j, learner.Y_true)
y2 = get_y(j, learner.Y_noise)
hits.append(true_over_T(y1, y2, active_value))
return(hits)
"""
def missed_active(self, active_value=None):
if active_value is None:
active_value = self.crit
X, keys = build_test_data(self.X, self.batch_details,
self.total_entries)
ys = get_y(keys, self.Y_true)
return(over_T(ys, active_value))
def build_test_data(X_dict, indice_list, total):
all_ind = upack(indice_list)
X_test = []
keys = []
for a in range(total):
if a not in all_ind:
X_test.append(X_dict[a])
keys.append(a)
return(X_test, keys)
def upack(Y):
out = []
leng = len(Y)
if leng == 1:
return(list(Y[0]))
else:
out = list(Y[0])
for j in range(leng-1):
out += list(Y[j+1])
return(np.array(out))
"""
def to_cumulative(y):
a = []
s = 0
for i in y:
s += i
a.append(s)
return(a)
def load_cumulative_data(source, noise, n_repeats, labels):
results = {}
for label in labels:
results[label] = []
for i in range(n_repeats):
filename = source + str(noise) +'R'+str(i)+'.pkl'
data = pickle.load(open(filename,'rb'))
for j in labels:
apb = actives_per_batch(data[j])
capb = to_cumulative(apb)
results[j].append(capb)
return(results)
def load_true_cumulative_data(source, noise, n_repeats, labels):
results = {}
for label in labels:
results[label] = []
for i in range(n_repeats):
filename = source + str(noise) +'R'+str(i)+'.pkl'
data = pickle.load(open(filename,'rb'))
for j in labels:
apb = true_actives_per_batch(data[j])
capb = to_cumulative(apb)
results[j].append(capb)
return(results)
def int_cumulative_data(data, labels):
results = {}
for j in labels:
apb = actives_per_batch(data[j])
capb = to_cumulative(apb)
results[j] = capb
return(results)
def int_true_cumulative_data(data, labels):
results = {}
for j in labels:
apb = true_actives_per_batch(data[j])
capb = to_cumulative(apb)
results[j]=capb
return(results)
def dataset(name, retests, noise, index, true, percent):
"""
Parameters
----------
name : str
dataset name. folder name where data is
retests : Bool
if results wiht retests are required
noise : float
noise of experiment
index : int
want results after how many batches
true : Bool
if want true hits results
Returns the mean enrichment factor for a given dataset, noise levels, retests
and index
-------
"""
source = 'results_'+str(percent)+'%/'+name
base_source = source+'/noR/AL_noise'+str(noise)+'R'
if retests == True:
source += '/withR/'
else:
source += '/noR/'
source += 'AL_noise'+str(noise)+'R'
labels = ['greedy', 'random', 'UCB', 'EI', 'PI']
repeats = 10
results = {}
for i in labels:
results[i] = []
for i in range(repeats):
file = source + str(i) +'.pkl'
base_file = base_source + str(i) +'.pkl'
data = pickle.load(open(file,'rb'))
base_data = pickle.load(open(base_file,'rb'))
base = base_data[0]['random'][index]
if base<1:
base=1
for j in labels:
results[j].append(data[true][j][index]/base)
res = {}
for k in labels:
res[k]=np.mean(results[k])
return(res, results)