forked from charent/ChatLM-mini-Chinese
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdpo_train.py
203 lines (159 loc) · 6.69 KB
/
dpo_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# coding=utf-8
from typing import Dict, Optional
import time
import os
import pandas as pd
import torch
from datasets import Dataset, load_dataset
from transformers import PreTrainedTokenizerFast, TrainingArguments
from trl import DPOTrainer
from tokenizers import Tokenizer
from peft import LoraConfig, TaskType, PeftModel
from config import DpoConfig, T5ModelConfig
from model.chat_model import TextToTextModel
from utils.functions import get_T5_config
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
def get_dataset(split: str, file: str, cache_dir: str = '.cache') -> Dataset:
"""Load the Anthropic Helpful-Harmless dataset from Hugging Face and convert it to the necessary format.
The dataset is converted to a dictionary with the following structure:
{
'prompt': List[str],
'chosen': List[str],
'rejected': List[str],
}
"""
dataset = load_dataset('json', data_files=file, split=split, cache_dir=cache_dir)
def split_prompt_and_responses(sample: dict) -> Dict[str, str]:
return {
# add an eos token for signal that end of sentence, using in generate.
"prompt": f"{sample['prompt']}[EOS]",
"chosen": f"{sample['chosen']}[EOS]",
"rejected": f"{sample['rejected']}[EOS]",
}
return dataset.map(split_prompt_and_responses).shuffle(2333)
def train_dpo(config: DpoConfig, peft_config: LoraConfig=None) -> None:
# step 1. 加载tokenizer
tokenizer = PreTrainedTokenizerFast.from_pretrained(config.tokenizer_dir)
# step 2. 加载预训练模型
model_train, model_ref = None, None
if os.path.isdir(config.sft_model_file):
# 传入文件夹则 from_pretrained
model_train = TextToTextModel.from_pretrained(config.sft_model_file)
model_ref = TextToTextModel.from_pretrained(config.sft_model_file)
else:
# load_state_dict
t5_config = get_T5_config(T5ModelConfig(), vocab_size=len(tokenizer), decoder_start_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id)
model_train = TextToTextModel(t5_config)
model_train.load_state_dict(torch.load(config.sft_model_file, map_location='cpu')) # set cpu for no exception
model_ref = TextToTextModel(t5_config)
model_ref.load_state_dict(torch.load(config.sft_model_file, map_location='cpu'))
# 4. 加载训练数据集
train_dataset = get_dataset("train", file=config.dpo_train_file)
# 5. 加载评估数据集
# eval_dataset = get_dataset("train", file=config.dpo_eval_file)
eval_dataset = None
# 6. 初始化训练参数
training_args = TrainingArguments(
per_device_train_batch_size=config.per_device_train_batch_size,
num_train_epochs=config.num_train_epochs,
auto_find_batch_size=True,
remove_unused_columns=False,
gradient_accumulation_steps=config.gradient_accumulation_steps,
learning_rate=config.learning_rate,
logging_first_step=True,
logging_steps=config.logging_steps,
save_steps=config.save_steps,
output_dir=config.output_dir,
optim="adafactor",
report_to="tensorboard",
log_level='info',
warmup_steps=config.warmup_steps,
bf16=False,
fp16=config.fp16,
seed=config.seed,
logging_dir=config.log_dir,
)
# 7. 初始化 DPO trainer
dpo_trainer = DPOTrainer(
model_train,
model_ref,
peft_config=peft_config,
args=training_args,
beta=config.beta,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
max_length=config.max_seq_len,
max_target_length=config.max_seq_len,
max_prompt_length=config.max_seq_len,
generate_during_eval=True,
is_encoder_decoder=True,
)
# 8. 训练
dpo_trainer.train(
# resume_from_checkpoint=True
)
# 9. save log
loss_log = pd.DataFrame(dpo_trainer.state.log_history)
log_dir = './logs'
if not os.path.exists(log_dir):
os.mkdir(log_dir)
loss_log.to_csv(f"{log_dir}/dpo_train_log_{time.strftime('%Y%m%d-%H%M')}.csv")
# 10. 保存模型/lora
suffixe = '/lora/' if peft_config is not None else '/dpo'
model_save_dir = '/'.join(config.sft_model_file.split('/')[0: -1]) + suffixe
dpo_trainer.save_model(model_save_dir)
print('save model or lora adapter to: {}'.format(model_save_dir))
def merge_lora_weight_into_model(config: DpoConfig, peft_config: LoraConfig) -> None:
# step 1. 加载tokenizer
tokenizer = PreTrainedTokenizerFast.from_pretrained(config.tokenizer_dir)
# step 2. 加载预训练模型
sft_model = None
if os.path.isdir(config.sft_model_file):
# 传入文件夹则 from_pretrained
sft_model = TextToTextModel.from_pretrained(config.sft_model_file)
else:
# load_state_dict
t5_config = get_T5_config(T5ModelConfig(), vocab_size=len(tokenizer), decoder_start_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id)
sft_model = TextToTextModel(t5_config)
sft_model.load_state_dict(torch.load(config.sft_model_file, map_location='cpu')) # set cpu for no exception
# 注意这个路径要和上面的model_save_dir一致
# train_dpo函数代码
# 9. 保存模型/lora
# suffixe = '/lora/' if peft_config is not None else '/dpo'
# model_save_dir = '/'.join(config.sft_model_file.split('/')[0: -1]) + suffixe
adapter_save_dir = '/'.join(config.sft_model_file.split('/')[0: -1]) + '/lora'
peft_model = PeftModel.from_pretrained(
model=sft_model,
model_id=adapter_save_dir,
config=peft_config,
adapter_name='adapter',
)
# peft_model = PeftModel(
# model=sft_model,
# peft_config=peft_config,
# adapter_name='adapter',
# )
# 3. load adapter
print('load adapter from dir: {}'.format(adapter_save_dir))
peft_model.load_adapter(model_id=adapter_save_dir, adapter_name='adapter',)
# 4. merge
peft_model = peft_model.merge_and_unload()
# 5. save
save_merge_file = config.sft_model_file + '.dpo_lora_merged'
sft_model.save_pretrained(save_merge_file)
print('save merge model file to: {}'.format(save_merge_file))
if __name__ == "__main__":
peft_config = LoraConfig(
task_type=TaskType.SEQ_2_SEQ_LM, # text 2 text lora model
inference_mode=False,
r=16,
lora_alpha=16,
lora_dropout=0.1,
bias="all",
)
dpo_config = DpoConfig()
# 1. train
train_dpo(dpo_config, peft_config=None)
# 2. merge lora adapter into model
# merge_lora_weight_into_model(dpo_config, peft_config)