
A Meta Social Networking Approach Towards

Decentralization

Pili Hu and Wing Cheong Lau

Department of Information Engineering
The Chinese University of Hong Kong

Email: {hupili,wclau}@ie.cuhk.edu.hk

July 2013

Abstract

There are a lot of problems associated with centralized Social Networking Ser-
vices (SNS), e.g. potential loss of accounts, poor privacy controls, etc. Many
developers and researchers all over the world now agree that decentralization is
the future of social networking. People from many communities have proposed
different solutions to address the problem. Despite their attractive features,
only a small portion of those solutions managed to jumpstart and only a few
of them grow to near million level of user populations. Based on this obser-
vation, we envisioned that migration is actually the grand challenge of all.
The loss of links (social connections with existing friends) is preventing former
centralized SNS users from moving to decentralized services (either stand-alone
distributed social services or federated social services). To address the problem
of migration, one urgent task is to enable flexible and programmable cross-
platform socialization. Towards this end, we build a lightweight Python-
based middleware to unify the interfaces and data structures of heterogeneous
SNS. Unlike most prior works, this middleware is user-oriented. With zero
infrastructure support (no need of server setup, database setup, etc), users
can readily manipulate their social channels in a programmable fashion. After
sharing our view on the future of social networking, we will briefly introduce
the architecture of the middleware and demo two sample applications.

1 Social Networking Services and the Problems

Social Networking Services (SNS) like Facebook and Twitter are an essential part of our
daily life now. For example, Facebook now have more than 1 billion monthly active users
[4]. This is about 1/7 of the earth’s population.

Despite the overwhelming success of the existing SNS, the centralized ownership and
control of these services have led to serious concerns in user privacy, censorship and oper-
ational robustness. The operator of an SNS has full knowledge of the profiles, social
relationships and communication activities of their users. It is a high-value target for
not only the typical attackers but also many totalitarian regimes which constantly seek
to monitor and control information dissemination among their people. The famous PRISM
project [8] is an example. Apart from the technical issues, centralized control also leads to
some non-user-friendly management styles. See the IndieWebCamp [3] for more examples.

1



All these observations lead us to pursue decentralization of social networking services.
With decentralized services, users have more control over their system and data. This in
turn gives more freedom for customization. People from many camps have envisioned that
decentralization is the future of social networking services. This can be achieved by either
a stand-alone distributed system like Diaspora [1] or a federated protocol like OStatus [7].

2 Current and Future Landscape

There are many Decentralized Social Networks (DSN) implementations and proposals
from both industrial developers and academic researchers. They address some of the prob-
lems associated with DSN, e.g. identity management, group management, communication
confidentiality, etc. Although they may not fully address all of the problems, they have
different attractive features. However, only a small portion of those solutions managed to
jumpstart and only a few of them grow to near million level of user populations.

The current landscape of social networks is: 1) there are a few dominant centralized
players; 2) there are many different decentralized solutions (systems or federation proto-
cols). The decentralized world is very small compared with the centralized one. Based on
the real world observations, we project them to the future:

• Majority of the users still live on centralized SNS. Firstly, most users do not have
time, energy and knowledge to care about privacy or other limitations of centralized
SNS. Even if they understand the differences, most users are willing to sacrifice
security and privacy for functionality (see how people percept cloud services). Sec-
ondly, link loss makes the new social network less interesting. Even if a consensus
understanding of the benefits of DSN is reached, users are still unwilling to move.
For example, even after the PRISM scandal [8], people are still active on those sites.

• Minority of the users move to many different platforms due to privacy policy, richer
functionality, etc. Those users are early adopters of new ideas even prior to the DSN
age. Since different platforms provide different functions, there is no single dominant
solution. Specialized SNS may emerge for certain group of users. Note that those
heterogeneous platforms include both centralized and decentralized services.

Here are a few remarks regarding the future landscape we envisioned:

• Migration is the biggest challenge on the way towards decentralization.

• Cross-platform socialization will be the main stream in a very long time.

3 A Meta Social Network

As is discussed in the last section, it is unwise to design a DSN from scratch and try hard
to attract users. Many excellent federation protocols also suffer the problem because large-
scale centralized players do not bother to federate with them. Instead, we can form a
network of all the social networks by stitching them together – a “meta social network”.

Nowadays, many users already actively communicate through more than one SNS. It
is noteworthy that users often consciously or subconsciously “stitch” the heterogeneous
platforms together by selectively relaying messages across different platforms after some
manual filtering/ editing. For example, after reading a “juicy” gossip from a blog or sub-
scribed email-list, you may forward it manually to your personal friends on Facebook. In
fact, such cross-platform forwarding operations can be viewed as the formation of a meta
social networks which overlays on top of the existing SNS.

2 Section 3



Our objective is to provide tools/ systems that can help users to better perform cross-
platform socialization. Those tools and systems can also gradually detach users from
existing centralized services and allows a smooth transition to decentralized world.

4 SNSAPI: A Cross-Platform Middleware

We proposed, designed and open-sourced SNSAPI – a cross-platform middleware to unify
interfaces and data structures of SNS. Some federation protocols have similar functions.
Due to their clean-slate design, existing SNS do not bother to implement them. This makes
them less likely a building block for a meta social network.

The design philosophy of most existing SNS (including many DSN proposals) is ser-
vice-centric. That is, they consider from the network’s point of view what data structure
and interface to use. The SNSAPI is designed in a user-centric manner, i.e. accept the
fact that the SNS world is highly heterogeneous and unify them for the users. It makes
the cross-platform operation much easier for normal users, giving them the programmable
flexibility. We envisioned three stages towards a meta social network:

1. Adapt to existing interfaces and try to unify the data structures. This is to allow
seamless migration from existing SNS to SNSAPI. User will be detached from
centralized services without loss of existing social connections.

2. Form a DSN directly among SNSAPI users. The multi-interfacing nature makes the
use case of SNSAPI very flexible. In Section 4.4.2, we demonstrate a way to form
an Ad Hoc DSN using SNSAPI based on RSS feeds. One can also leverage Emails
and other forthcoming communication channels.

3. Get support from existing SNS. When the SNSAPI’s way of socialization (i.e. user-
centric) becomes well accepted, we may expect the support from existing service
providers (e.g. special API). The gain of efficiency and functionality can benefit
both system operators and end users.

4.1 A Unified View of Social Networking Services

A key function of SNS like Facebook, Twitter and SinaWeibo, is to support the dissemina-
tion of information among a group of users. From this viewpoint, many other conventional
communication services (Email, RSS/Atom feeds, SMS, etc) can also be abstracted using
the same primitives of SNS. We thus term all of these services as Social Networking Services
and include them in the scope of SNSAPI. Table 1 summarizes four parameters of those
services. Facebook type of services are emphasized as an example.

Parameters Values
Links static, dynamic

Direction uni-directional, bi-directional
Accessibility read , write
Verification authorization, authentication

Table 1. Unified View of SNS

4.2 Two Design Principles

Firstly, we focus on solving 80% problems. As a start, we only abstract five methods for
SNS, namely auth, home_timeline, update, reply, forward. The five methods can cover
more than 80% daily operations on an Online Social Network (OSN) and are also universal
across heterogeneous platforms. We refrain from abstracting platform specific functions.

SNSAPI: A Cross-Platform Middleware 3



Secondly, we stay open with existing services. We do not want to solve a full
stack of problems. Many problems are already solved (probably in a degraded way). We
encourage users to take advantage of existing services rather than reinventing the wheels.
For example, I want to selectively forward messages from one OSN to my cellphone via
SMS. Instead of developing a “SMS” plugin for SNSAPI, I would suggest the user to pro-
gram the selection strategy using SNSAPI and use IFTTT [6] to perform a straightforward
forwarding from RSS feeds to cellphone.

4.3 Architecture

SNSAPI adopts a modularized and layered design. Figure 1 depicts the architecture of
SNSAPI, which consists of the following three layers:

• Interface Layer (IL). SNSBase is the base class for all kinds of SNS. One can derive
the base class to implement real logic that interfaces with those platforms. In
SNSAPI terminology, the modules containing derived classes are called “plugin”; the
derived classes are called “platform”; the instance of the classes are called “channel”.
Message and message list types are also defined in this layer.

• Physical Layer (PL). There are many common operations when interfacing with
different SNS. We implement them in PL so that plugin authors do not need to build
all the logics from scratch. Examples are: HTTP request/response, OAuth, Error
definition, etc. Many 3rd party modules are used in this layer. To keep flexibility,
we provide wrapper class for most third party modules, so that one can substitute
(part of) them with better ones in the future.

• Application Layer (AL). Application authors can directly use classes from IL. e.g.
write an auto-reply script by using RenrenStatus (derived from SNSBase) and only
a dozen of lines are needed. To reduce repeated works in batch operations, we
developed a “Pocket” class. It is a container to hold multiple channels. For most
applications, Pocket should be the Service Access Point (SAP) to SNSAPI. In this
way, end users can enable new channels by simple configuration and no intervention
from app developer is needed.

Figure 1. The SNSAPI Architecture

4 Section 4



4.4 Example Applications

SNSAPI is very flexible to support many user-centric applications. A group has used it
in production to automatically update statuses on multiple channels. We have also build
PIXS [5] upon SNSAPI. Equipped with a lightweight ranking framework, PIXS users can
be much more efficient in identifying and disseminating information in a cross-platform
fashion.

In this section, we briefly discuss two example applications to give the reader a flavour.

4.4.1 An Auto Backup Tool Based on SNSAPI

Many SNS users find it hard to backup their data, especially when their data span multiple
SNS. Such a backup tool can be easily written on SNSAPI in a few steps:

1. Register as developers on intended SNS and acquire app credentials.

2. Write a script to invoke home_timeline from those SNS and invoke update to a
local SQLite platform.

This only takes a few lines of coding and some configuration. With more forthcoming
plugins, one can easily backup data from many SNS. The major benefit roots in the unified
data structure. The entries stored in SQLite DB are ready to support further data mining
tasks, e.g. find my use pattern, extract the messages from my best friends, etc.

4.4.2 An Ad Hoc DSN Based on RSS Platform of SNSAPI

RSS platform of SNSAPI can be used to form an ad hoc DSN:

1. Configure a RSS2RW (read-/ write- able RSS2) platform.

2. Use SNSAPI (from CLI, GUI, or one’s own scripts) to update status on it.

3. Users configure a RSS2RW for each friend’s feeds. When home_timeline is invoked,
one can get all the statuses of his/ her friends.

This is just a preliminary example. One can use PubSubHub [2] to extend the idea in this
section to form a realtime ad hoc DSN. Of course, more infrastructure is required in this
case. We have a few remarks regarding this prototype:

• Users who do not use SNSAPI can gracefully degrade. e.g. use feed readers.

• Using SNSAPI can benefit from the meta information we will add in the future.

Bibliography

[1] Diaspora. Available at http://diasporaproject.org/.

[2] Pubsubhubhub. https://code.google.com/p/pubsubhubbub/.

[3] Indiewebcamp. http://indiewebcamp.com/why, 2013.

[4] Facebook. Facebook fact sheet. http://newsroom.fb.com/download-media/4227, 2012.

[5] P. Hu, J. Li, and W. C. Lau. Pixs: Programmable intelligence for cross-platform socialization. In
HotPlanet , 2013. co-located with Sigcomm’13.

[6] IFTTT. Ifttt. https://ifttt.com.

[7] W3C. Ostatus community group. http://www.w3.org/community/ostatus/, 2013.

[8] WashingtonPost. Nsa slides explain the prism data-collection program. http://www.washington-
post.com/wp-srv/special/politics/prism-collection-documents/, June 2013.

1. More white papers of SNSAPI can be found at:

https://github.com/hupili/snsapi/wiki/Introduction

2. Project link :
https://github.com/hupili/snsapi/

Bibliography 5


