forked from txya900619/whisper-finetune-formosan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjax_evaluate_on_custom_dataset.py
188 lines (162 loc) · 6.01 KB
/
jax_evaluate_on_custom_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import argparse
import evaluate
from tqdm import tqdm
import jax.numpy as jnp
from datasets import Audio, load_from_disk
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
from whisper_jax import FlaxWhisperForConditionalGeneration, FlaxWhisperPipline
wer_metric = evaluate.load("wer")
cer_metric = evaluate.load("cer")
def is_target_text_in_range(ref):
if ref.strip() == "ignore time segment in scoring":
return False
else:
return ref.strip() != ""
def get_text(sample):
if "text" in sample:
return sample["text"]
elif "sentence" in sample:
return sample["sentence"]
elif "normalized_text" in sample:
return sample["normalized_text"]
elif "transcript" in sample:
return sample["transcript"]
elif "transcription" in sample:
return sample["transcription"]
else:
raise ValueError(
f"Expected transcript column of either 'text', 'sentence', 'normalized_text' or 'transcript'. Got sample of "
".join{sample.keys()}. Ensure a text column name is present in the dataset."
)
def get_text_column_names(column_names):
if "text" in column_names:
return "text"
elif "sentence" in column_names:
return "sentence"
elif "normalized_text" in column_names:
return "normalized_text"
elif "transcript" in column_names:
return "transcript"
elif "transcription" in column_names:
return "transcription"
whisper_norm = BasicTextNormalizer()
def normalise(batch):
batch["norm_text"] = whisper_norm(get_text(batch))
return batch
def data(dataset):
for i, item in enumerate(dataset):
yield {**item["audio"], "reference": get_text(item), "norm_reference": item["norm_text"]}
def main(args):
model_id = args.hf_model
if args.half_precision == False:
whisper_asr = FlaxWhisperPipline(
model_id
)
else:
whisper_asr = FlaxWhisperPipline(
model_id,
dtype=jnp.float16
)
whisper_asr.model.config.forced_decoder_ids = (
whisper_asr.tokenizer.get_decoder_prompt_ids(
language=args.language, task="transcribe"
)
)
os.system(f"mkdir {args.output_dir}")
for dset in args.eval_datasets:
print('\nInfering on the dataset : ', dset)
dataset = load_from_disk(dset)
text_column_name = get_text_column_names(dataset.column_names)
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
dataset = dataset.map(normalise, num_proc=2)
dataset = dataset.filter(is_target_text_in_range, input_columns=[text_column_name], num_proc=2)
predictions = []
references = []
norm_predictions = []
norm_references = []
for utt in tqdm(data(dataset), desc='Decode Progress'):
out = whisper_asr(utt['array'])
predictions.append(out["text"])
references.append(utt["reference"])
norm_predictions.append(whisper_norm(out["text"]))
norm_references.append(utt["norm_reference"])
wer = wer_metric.compute(references=references, predictions=predictions)
wer = round(100 * wer, 2)
cer = cer_metric.compute(references=references, predictions=predictions)
cer = round(100 * cer, 2)
norm_wer = wer_metric.compute(references=norm_references, predictions=norm_predictions)
norm_wer = round(100 * norm_wer, 2)
norm_cer = cer_metric.compute(references=norm_references, predictions=norm_predictions)
norm_cer = round(100 * norm_cer, 2)
print("WER : ", wer)
print("CER : ", cer)
print("\nNORMALIZED WER : ", norm_wer)
print("NORMALIZED CER : ", norm_cer)
dset = dset.replace('/', '_')
op_file = args.output_dir + '/' + dset
op_file = op_file + '_' + args.hf_model.replace('/', '_')
result_file = open(op_file, 'w')
result_file.write('\nWER: ' + str(wer) + '\n')
result_file.write('CER: ' + str(cer) + '\n')
result_file.write('\nNORMALIZED WER: ' + str(norm_wer) + '\n')
result_file.write('NORMALIZED CER: ' + str(norm_cer) + '\n\n\n')
for ref, hyp in zip(references, predictions):
result_file.write('REF: ' + ref + '\n')
result_file.write('HYP: ' + hyp + '\n')
result_file.write("------------------------------------------------------" + '\n')
result_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--hf_model",
type=str,
required=False,
default="openai/whisper-tiny",
help="Huggingface model name. Example: openai/whisper-tiny",
)
parser.add_argument(
"--language",
type=str,
required=False,
default="hi",
help="Two letter language code for the transcription language, e.g. use 'hi' for Hindi. This helps initialize the tokenizer.",
)
parser.add_argument(
"--eval_datasets",
type=str,
nargs='+',
required=True,
default=[],
help="List of datasets to evaluate the model on."
)
parser.add_argument(
"--device",
type=int,
required=False,
default=0,
help="The device to run the pipeline on. -1 for CPU, 0 for the first GPU (default) and so on.",
)
parser.add_argument(
"--batch_size",
type=int,
required=False,
default=16,
help="Number of samples to go through each streamed batch.",
)
parser.add_argument(
"--output_dir",
type=str,
required=False,
default="jax_predictions_dir",
help="Output directory for the predictions and hypotheses generated."
)
parser.add_argument(
"--half_precision",
required=False,
default=False,
type=lambda x: (str(x).lower() == 'true'),
help="Run with half precision.",
)
args = parser.parse_args()
main(args)