-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalexnet.py
37 lines (33 loc) · 1.27 KB
/
alexnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import torch.nn as nn
class AlexNet(nn.Module):
def __init__(self, num_classes=10):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(64, 192, kernel_size=3, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2)
)
self.fc_layers = nn.Sequential(
nn.Dropout(0.6),
nn.Linear(4096, 2048),
nn.ReLU(inplace=True),
nn.Dropout(0.6),
nn.Linear(2048, 2048),
nn.ReLU(inplace=True),
nn.Linear(2048, num_classes),
)
def forward(self, x):
conv_features = self.features(x)
flatten = conv_features.view(conv_features.size(0), -1)
fc = self.fc_layers(flatten)
return fc