-
Notifications
You must be signed in to change notification settings - Fork 135
installationAdvanced
This page is for when the recommended methods of installation do not work. Miniconda or PIP can be used to install the raven libraries and hints for using them are below. Easybuild has also been used, but is only recommended if you are already using Easybuild for other software.
Miniconda can be directly installed using the instructions at the Miniconda website. Conda may need to be told about web proxies. For INL users, how to do this is explained at INL-proxy. Once Miniconda is installed, you can install RAVEN library dependencies as follows:
conda install numpy=1.11.0 h5py=2.6.0 scipy=0.17.1 scikit-learn=0.17.1 matplotlib=1.5.1 python=2.7 hdf5 swig pylint lxml
To get the newest instead the following command can be used (Warning: new versions may not yet be supported):
conda install numpy h5py scipy scikit-learn matplotlib hdf5 swig pylint lxml
Miniconda allows extra environments, with specified versions. To create one for RAVEN the following command can be used:
conda create --name raven_libraries -y numpy=1.11.0 h5py=2.6.0 scipy=0.17.1 scikit-learn=0.17.1 matplotlib=1.5.1 python=2.7 hdf5 swig pylint lxml
This command is actually generated by running the following command in the raven directory:
python scripts/TestHarness/testers/RavenUtils.py --conda-create
The environment can then be activated by:
source activate raven_libraries
and deactivated by:
source deactivate
The following install instructions can be used to install with PIP
BASE_DIR="$HOME/raven_libs"
INSTALL_DIR="$BASE_DIR/install"
VE_DIR="$BASE_DIR/ve"
mkdir -p $BASE_DIR
cd $BASE_DIR
wget https://downloads.sourceforge.net/project/swig/swig/swig-3.0.12/swig-3.0.12.tar.gz
tar -xvzf swig-3.0.12.tar.gz
cd swig-3.0.12/
./configure --prefix="$INSTALL_DIR"
make
make install
export PATH="$INSTALL_DIR/bin:$PATH"
cd
pip install --upgrade --target="$INSTALL_DIR" virtualenv
python "$INSTALL_DIR"/virtualenv.py "$VE_DIR"
source "$VE_DIR/bin/activate"
pip install numpy==1.11.0 h5py==2.6.0 scipy==0.17.1 scikit-learn==0.17.1 matplotlib==1.5.1
BASE_DIR="$HOME/raven_libs"
INSTALL_DIR="$BASE_DIR/install"
VE_DIR="$BASE_DIR/ve"
export PATH="$INSTALL_DIR/bin:$PATH"
source "$VE_DIR/bin/activate"
This will probably need to be customized for different cluster, but these were used on one CentOS 7.2 cluster in 2017:
BASE_DIR="/opt/raven_libs"
INSTALL_DIR="$BASE_DIR/install"
VE_DIR="$BASE_DIR/ve"
mkdir -p $BASE_DIR
cd $BASE_DIR
wget https://downloads.sourceforge.net/project/swig/swig/swig-3.0.12/swig-3.0.12.tar.gz
tar -xvzf swig-3.0.12.tar.gz
cd swig-3.0.12/
./configure --prefix="$INSTALL_DIR"
make
make install
export PATH="$INSTALL_DIR/bin:$PATH"
cd $BASE_DIR
wget http://prdownloads.sourceforge.net/tcl/tcl8.6.6-src.tar.gz
tar -xvzf tcl8.6.6-src.tar.gz
cd tcl8.6.6/unix
./configure --prefix="$INSTALL_DIR"
make
make test
make install
cd $BASE_DIR
wget http://prdownloads.sourceforge.net/tcl/tk8.6.6-src.tar.gz
tar -xvzf tk8.6.6-src.tar.gz
cd tk8.6.6/unix/
./configure --prefix="$INSTALL_DIR"
make
make install
export LD_LIBRARY_PATH="$INSTALL_DIR"/lib:"$LD_LIBRARY_PATH"
cd $BASE_DIR
wget https://www.python.org/ftp/python/2.7.13/Python-2.7.13.tgz
tar -xvzf Python-2.7.13.tgz
cd Python-2.7.13/
./configure --prefix="$INSTALL_DIR"
make -j16
make install
cd
pip install --upgrade --target="$INSTALL_DIR" virtualenv
python "$INSTALL_DIR"/virtualenv.py "$VE_DIR"
source "$VE_DIR/bin/activate"
pip install numpy==1.11.0 h5py==2.6.0 scipy==0.17.1 scikit-learn==0.17.1
pip install matplotlib
#Commands to run each time.
BASE_DIR="/opt/raven_libs"
INSTALL_DIR="$BASE_DIR/install"
VE_DIR="$BASE_DIR/ve"
export PATH="$INSTALL_DIR/bin:$PATH"
export LD_LIBRARY_PATH="$INSTALL_DIR"/lib:"$LD_LIBRARY_PATH"
source "$VE_DIR/bin/activate"