-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
76 lines (62 loc) · 1.55 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import numpy as np
import scipy.signal as sig
def mix(*args):
l = np.max([len(a) for a in args])
ret = np.zeros(l)
for a in args:
for i in range(len(a)):
ret[i] += a[i]
ret = np.trim_zeros(ret, 'b')
return ret
def dot(*args):
l = np.min([len(a) for a in args])
ret = np.ones(l)
for a in args:
for i in range(l):
ret[i] *= a[i]
ret = np.trim_zeros(ret, 'b')
return ret
def convolve(*args):
ret = [1]
for a in args:
# 空随机变量无论和什么随机变量相加还是空随机变量
if len(a) == 0:
return []
ret = sig.convolve(ret, a)
return ret
def convolve_avg(pdfs, avgs):
if len(pdfs) != len(avgs):
raise
ret = []
for i in range(len(pdfs)):
tmp = [1]
for j in range(len(pdfs)):
if i == j:
tmp = convolve(tmp, dot(pdfs[j], avgs[j]))
else:
tmp = convolve(tmp, pdfs[j])
ret = mix(ret, tmp)
return ret
def to_cdf(pdf):
s = 0
ret = []
for i in range(len(pdf)):
s += pdf[i]
ret.append(s)
return ret
def from_cdf(cdf):
last = 0
ret = []
for i in range(len(cdf)):
ret.append(cdf[i] - last)
last = cdf[i]
return ret
if __name__ == '__main__':
# a = mix([1, 2], [0, 0, 3], [0, 0, 0, 4])
# print(a)
# a = convolve([1, 2], [3, 4])
# print(a)
# a = convolve([1, 2], [3, 4, 5], [1])
# print(a)
a = convolve_avg([[1], [.5, .5]], [[7], [8, 9]])
print(a)