-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
207 lines (179 loc) · 8.88 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import torch.nn as nn
import torch.nn.functional as F
import torch
import numpy as np
class RandlaNet(nn.Module):
def __init__(self, d_out, n_layers, n_classes):
super(RandlaNet, self).__init__()
self.n_classes = n_classes
dilate_block_in = 8
self.fc1 = nn.Linear(6, dilate_block_in)
self.bn1 = nn.BatchNorm1d(dilate_block_in, eps=1e-6, momentum=0.01)
self.f_encoders = nn.ModuleList()
decoder_in_list = [d_out[0]*2]
for i in range(n_layers):
self.f_encoders.append(DilatedResidualBlock(dilate_block_in, d_out[i]))
dilate_block_in = d_out[i]*2
decoder_in_list.append(dilate_block_in)
self.conv2 = nn.Conv2d(dilate_block_in, dilate_block_in,
kernel_size=[1, 1], stride=[1, 1])
self.bn2 = nn.BatchNorm2d(dilate_block_in, eps=1e-6, momentum=0.01)
self.f_decoders = nn.ModuleList()
for i in range(n_layers):
self.f_decoders.append(FeatureDecoder(decoder_in_list[-i-1] +
decoder_in_list[-i-2],
decoder_in_list[-i-2]))
self.conv3 = nn.Conv2d(decoder_in_list[0], 64, kernel_size=[1, 1],
stride=[1, 1])
self.bn3 = nn.BatchNorm2d(64, eps=1e-6, momentum=0.01)
self.conv4 = nn.Conv2d(64, 32, kernel_size=[1, 1], stride=[1, 1])
self.bn4 = nn.BatchNorm2d(32, eps=1e-6, momentum=0.01)
self.drop4 = nn.Dropout2d(p=0.5)
self.conv5 = nn.Conv2d(32, self.n_classes, kernel_size=[1, 1],
stride=[1, 1])
def forward(self, inputs):
x = inputs['features']
x = self.fc1(x)
x = x.permute(0, 2, 1).contiguous()
x = self.bn1(x)
x = F.leaky_relu(x)
x = x[:, :, :, None]
encoded_list = []
for i, encoder in enumerate(self.f_encoders):
x = encoder(x, inputs['xyz'][i], inputs['neigh_idx'][i])
if i == 0:
encoded_list.append(x.clone())
x = random_sample(x, inputs['sub_idx'][i])
encoded_list.append(x.clone())
x = F.leaky_relu(self.bn2(self.conv2(x)), negative_slope=0.2)
for i, decoder in enumerate(self.f_decoders):
x = decoder(x, encoded_list[-i-2], inputs['interp_idx'][-i-1])
x = F.leaky_relu(self.bn3(self.conv3(x)), negative_slope=0.2)
x = F.leaky_relu(self.bn4(self.conv4(x)), negative_slope=0.2)
x = self.drop4(x)
x = self.conv5(x)
x = x.squeeze(-1).permute(0, 2, 1).reshape([-1, self.n_classes]).contiguous()
return x
class FeatureDecoder(nn.Module):
def __init__(self, f_in, f_out):
super(FeatureDecoder, self).__init__()
self.trconv1 = nn.ConvTranspose2d(f_in, f_out, kernel_size=[1, 1],
stride=[1, 1])
self.bn1 = nn.BatchNorm2d(f_out, eps=1e-6, momentum=0.01)
def forward(self, feature, encoded_feature, interp_idx):
f_interp_i = nearest_interpolation(feature, interp_idx)
f_decoded = self.trconv1(torch.cat([encoded_feature, f_interp_i],
dim=1))
f_decoded = self.bn1(f_decoded)
return f_decoded
class DilatedResidualBlock(nn.Module):
def __init__(self, f_in, d_out):
super(DilatedResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(f_in, d_out//2, kernel_size=[1, 1],
stride=[1, 1])
self.bn1 = nn.BatchNorm2d(d_out//2, eps=1e-6, momentum=0.01)
self.bb = BuildingBlock(d_out)
self.conv2 = nn.Conv2d(d_out, d_out*2, kernel_size=[1, 1],
stride=[1, 1])
self.bn2 = nn.BatchNorm2d(d_out*2, eps=1e-6, momentum=0.01)
self.shortcut = nn.Conv2d(f_in, d_out*2, kernel_size=[1, 1],
stride=[1, 1])
self.bn_shortcut = nn.BatchNorm2d(d_out*2, eps=1e-6, momentum=0.01)
def forward(self, feature, xyz, neigh_idx):
f_pc = F.leaky_relu(self.bn1(self.conv1(feature)), negative_slope=0.2)
f_pc = self.bb(xyz, f_pc, neigh_idx)
f_pc = self.bn2(self.conv2(f_pc))
shortcut = self.bn_shortcut(self.shortcut(feature))
return F.leaky_relu(f_pc + shortcut)
class BuildingBlock(nn.Module):
def __init__(self, d_out):
super(BuildingBlock, self).__init__()
self.conv1 = nn.Conv2d(10, d_out//2, kernel_size=[1, 1], stride=[1, 1])
self.bn1 = nn.BatchNorm2d(d_out//2, eps=1e-6, momentum=0.01)
self.attpool1 = AttentivePooling(2*(d_out//2), d_out//2)
self.conv2 = nn.Conv2d(d_out//2, d_out//2, kernel_size=[1, 1],
stride=[1, 1])
self.bn2 = nn.BatchNorm2d(d_out//2, eps=1e-6, momentum=0.01)
self.attpool2 = AttentivePooling(2*(d_out//2), d_out)
def forward(self, xyz, feature, neigh_idx):
f_xyz = relative_pos_encoding(xyz, neigh_idx)
f_xyz = F.leaky_relu(self.bn1(self.conv1(f_xyz)), negative_slope=0.2)
feature = torch.squeeze(feature, dim=-1).permute(0, 2, 1).contiguous()
f_neighbours = gather_neighbour(feature, neigh_idx)
f_concat = torch.cat([f_neighbours, f_xyz], dim=1)
f_pc_agg = self.attpool1(f_concat)
f_xyz = F.leaky_relu(self.bn2(self.conv2(f_xyz)), negative_slope=0.2)
f_pc_agg = torch.squeeze(f_pc_agg, dim=-1).permute(0, 2, 1).contiguous()
f_neighbours = gather_neighbour(f_pc_agg, neigh_idx)
f_concat = torch.cat([f_neighbours, f_xyz], dim=1)
f_pc_agg = self.attpool2(f_concat)
return f_pc_agg
class AttentivePooling(nn.Module):
def __init__(self, n_feature, d_out):
super(AttentivePooling, self).__init__()
self.n_feature = n_feature
self.fc1 = nn.Linear(n_feature, n_feature, bias=False)
self.conv1 = nn.Conv2d(n_feature, d_out, kernel_size=[1, 1],
stride=[1, 1])
self.bn1 = nn.BatchNorm2d(d_out, eps=1e-6, momentum=0.01)
def forward(self, x):
batch_size = x.shape[0]
num_points = x.shape[2]
num_neigh = x.shape[3]
x = x.permute(0, 2, 3, 1).contiguous()
x = torch.reshape(x, [-1, num_neigh, self.n_feature])
att_activation = self.fc1(x)
att_score = F.softmax(att_activation, dim=1)
x = x * att_score
x = torch.sum(x, dim=1)
x = torch.reshape(x, [batch_size, num_points, self.n_feature])[:, :, :, None].permute(0, 2, 1, 3).contiguous()
x = F.leaky_relu(self.bn1(self.conv1(x)), negative_slope=0.2)
return x
def relative_pos_encoding(xyz, neighbor_idx):
neighbor_xyz = gather_neighbour(xyz, neighbor_idx)
xyz = xyz[:, :, None, :].permute(0, 3, 1, 2).contiguous()
repeated_xyz = xyz.repeat(1, 1, 1, 16)
relative_xyz = repeated_xyz - neighbor_xyz
relative_dist = torch.sqrt(torch.sum(relative_xyz**2, dim=1, keepdim=True))
relative_feature = torch.cat([relative_dist, relative_xyz, repeated_xyz, neighbor_xyz], dim=1)
return relative_feature
def gather_neighbour(point_features, neighbor_idx):
batch_size = point_features.shape[0]
n_points = point_features.shape[1]
n_features = point_features.shape[2]
index_input = torch.reshape(neighbor_idx, shape=[batch_size, -1])
features = batch_gather(point_features, index_input)
features = torch.reshape(features, [batch_size,
n_points,
neighbor_idx.shape[-1],
n_features])
return features.permute(0, 3, 1, 2).contiguous()
def random_sample(feature, pool_idx):
feature = torch.squeeze(feature, dim=3)
num_neigh = pool_idx.shape[-1]
batch_size = pool_idx.shape[0]
d = feature.shape[1]
feature = feature.permute(0, 2, 1).contiguous()
pool_idx = torch.reshape(pool_idx, [batch_size, -1])
pool_features = batch_gather(feature, pool_idx)
pool_features = torch.reshape(pool_features, [batch_size, -1, num_neigh, d])
pool_features = torch.max(pool_features, dim=2, keepdim=True)[0]
return pool_features.permute(0, 3, 1, 2).contiguous()
def nearest_interpolation(feature, interp_idx):
feature = torch.squeeze(feature, dim=3)
batch_size = interp_idx.shape[0]
up_num_points = interp_idx.shape[1]
interp_idx = torch.reshape(interp_idx, [batch_size, up_num_points])
feature = feature.permute(0, 2, 1).contiguous()
interp_features = batch_gather(feature, interp_idx)
return interp_features.permute(0, 2, 1)[:, :, :, None].contiguous()
def batch_gather(tensor, indices):
shape = list(tensor.shape)
device = tensor.device
flat_first = torch.reshape(
tensor, [shape[0] * shape[1]] + shape[2:])
offset = torch.reshape(
torch.arange(shape[0], device=device) * shape[1],
[shape[0]] + [1] * (len(indices.shape) - 1))
output = flat_first[indices.long() + offset]
return output