-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathgenerate.py
196 lines (164 loc) · 7.46 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import argparse
import os
import numpy as np
import torch
import subprocess
from rdkit import Chem
from src import const
from src.datasets import collate_with_fragment_edges, get_dataloader, parse_molecule
from src.lightning import DDPM
from src.linker_size_lightning import SizeClassifier
from src.utils import FoundNaNException
from src.visualizer import save_xyz_file
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument(
'--fragments', action='store', type=str, required=True,
help='Path to the file with input fragments'
)
parser.add_argument(
'--model', action='store', type=str, required=True,
help='Path to the DiffLinker model'
)
parser.add_argument(
'--linker_size', action='store', type=str, required=True,
help='Linker size (int) or allowed size boundaries (comma-separated integers) or path to the size prediction model'
)
parser.add_argument(
'--output', action='store', type=str, required=False, default='./',
help='Directory where sampled molecules will be saved'
)
parser.add_argument(
'--n_samples', action='store', type=int, required=False, default=5,
help='Number of linkers to generate'
)
parser.add_argument(
'--n_steps', action='store', type=int, required=False, default=None,
help='Number of denoising steps'
)
parser.add_argument(
'--anchors', action='store', type=str, required=False, default=None,
help='Comma-separated indices of anchor atoms '
'(according to the order of atoms in the input fragments file, enumeration starts with 1)'
)
def read_molecule(path):
if path.endswith('.pdb'):
return Chem.MolFromPDBFile(path, sanitize=False, removeHs=True)
elif path.endswith('.mol'):
return Chem.MolFromMolFile(path, sanitize=False, removeHs=True)
elif path.endswith('.mol2'):
return Chem.MolFromMol2File(path, sanitize=False, removeHs=True)
elif path.endswith('.sdf'):
return Chem.SDMolSupplier(path, sanitize=False, removeHs=True)[0]
raise Exception('Unknown file extension')
def main(input_path, model, output_dir, n_samples, n_steps, linker_size, anchors):
# Setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
os.makedirs(output_dir, exist_ok=True)
if linker_size.isdigit():
print(f'Will generate linkers with {linker_size} atoms')
linker_size = int(linker_size)
def sample_fn(_data):
return torch.ones(_data['positions'].shape[0], device=device, dtype=const.TORCH_INT) * linker_size
else:
boundaries = [x.strip() for x in linker_size.split(',')]
if len(boundaries) == 2 and boundaries[0].isdigit() and boundaries[1].isdigit():
left = int(boundaries[0])
right = int(boundaries[1])
print(f'Will generate linkers with numbers of atoms sampled from U({left}, {right})')
def sample_fn(_data):
shape = len(_data['positions']),
return torch.randint(left, right + 1, shape, device=device, dtype=const.TORCH_INT)
else:
print(f'Will generate linkers with sampled numbers of atoms')
size_nn = SizeClassifier.load_from_checkpoint(linker_size, map_location=device).eval().to(device)
def sample_fn(_data):
out, _ = size_nn.forward(_data, return_loss=False)
probabilities = torch.softmax(out, dim=1)
distribution = torch.distributions.Categorical(probs=probabilities)
samples = distribution.sample()
sizes = []
for label in samples.detach().cpu().numpy():
sizes.append(size_nn.linker_id2size[label])
sizes = torch.tensor(sizes, device=samples.device, dtype=const.TORCH_INT)
return sizes
ddpm = DDPM.load_from_checkpoint(model, map_location=device).eval().to(device)
if n_steps is not None:
ddpm.edm.T = n_steps
if ddpm.center_of_mass == 'anchors' and anchors is None:
print(
'Please pass anchor atoms indices '
'or use another DiffLinker model that does not require information about anchors'
)
return
# Reading input fragments
extension = input_path.split('.')[-1]
if extension not in ['sdf', 'pdb', 'mol', 'mol2']:
print('Please upload the file in one of the following formats: .pdb, .sdf, .mol, .mol2')
return
try:
molecule = read_molecule(input_path)
molecule = Chem.RemoveAllHs(molecule)
name = '.'.join(input_path.split('/')[-1].split('.')[:-1])
except Exception as e:
return f'Could not read the molecule: {e}'
positions, one_hot, charges = parse_molecule(molecule, is_geom=ddpm.is_geom)
fragment_mask = np.ones_like(charges)
linker_mask = np.zeros_like(charges)
anchor_flags = np.zeros_like(charges)
if anchors is not None:
for anchor in anchors.split(','):
anchor_flags[int(anchor.strip()) - 1] = 1
dataset = [{
'uuid': '0',
'name': '0',
'positions': torch.tensor(positions, dtype=const.TORCH_FLOAT, device=device),
'one_hot': torch.tensor(one_hot, dtype=const.TORCH_FLOAT, device=device),
'charges': torch.tensor(charges, dtype=const.TORCH_FLOAT, device=device),
'anchors': torch.tensor(anchor_flags, dtype=const.TORCH_FLOAT, device=device),
'fragment_mask': torch.tensor(fragment_mask, dtype=const.TORCH_FLOAT, device=device),
'linker_mask': torch.tensor(linker_mask, dtype=const.TORCH_FLOAT, device=device),
'num_atoms': len(positions),
}] * n_samples
global_batch_size = min(n_samples, 64)
dataloader = get_dataloader(dataset, batch_size=global_batch_size, collate_fn=collate_with_fragment_edges)
# Sampling
print('Sampling...')
for batch_i, data in tqdm(enumerate(dataloader), total=len(dataloader)):
batch_size = len(data['positions'])
chain = None
for i in range(5):
try:
chain, node_mask = ddpm.sample_chain(data, sample_fn=sample_fn, keep_frames=1)
break
except FoundNaNException:
continue
if chain is None:
raise Exception('Could not generate in 5 attempts')
x = chain[0][:, :, :ddpm.n_dims]
h = chain[0][:, :, ddpm.n_dims:]
# Put the molecule back to the initial orientation
com_mask = data['fragment_mask'] if ddpm.center_of_mass == 'fragments' else data['anchors']
pos_masked = data['positions'] * com_mask
N = com_mask.sum(1, keepdims=True)
mean = torch.sum(pos_masked, dim=1, keepdim=True) / N
x = x + mean * node_mask
offset_idx = batch_i * global_batch_size
names = [f'output_{offset_idx+i}_{name}' for i in range(batch_size)]
save_xyz_file(output_dir, h, x, node_mask, names=names, is_geom=ddpm.is_geom, suffix='')
for i in range(batch_size):
out_xyz = f'{output_dir}/output_{offset_idx+i}_{name}_.xyz'
out_sdf = f'{output_dir}/output_{offset_idx+i}_{name}_.sdf'
subprocess.run(f'obabel {out_xyz} -O {out_sdf} 2> /dev/null', shell=True)
print(f'Saved generated molecules in .xyz and .sdf format in directory {output_dir}')
if __name__ == '__main__':
args = parser.parse_args()
main(
input_path=args.fragments,
model=args.model,
output_dir=args.output,
n_samples=args.n_samples,
n_steps=args.n_steps,
linker_size=args.linker_size,
anchors=args.anchors,
)