-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparser.py
165 lines (141 loc) · 5.76 KB
/
parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import argparse
import pandas as pd
import numpy as np
import torch
from torch.autograd import Variable
from torch.utils.data import Dataset
from torchvision import transforms
from pathlib import Path
import skimage
import models
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--load', type=str, default=None,
help='directory to load model from')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
def add_noise(img, gauss_var=0.02):
img = skimage.util.random_noise(img, mode='gaussian', var=gauss_var)
return img
class TestLoader(Dataset):
"""UIdaho CSV dataset."""
def __init__(self, test_file, transform=None):
"""
Args:
csv_file (string): Path to the csv file with annotations.
root_dir (string): Directory with all the images.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.train_data = pd.read_csv(test_file).values
self.train_data = self.train_data[:, 1:].reshape(self.train_data.shape[0], 1, 24, 120)
self.transform = transform
def __len__(self):
return len(self.train_data)
def __getitem__(self, idx):
img = self.train_data[idx]
# img = img.astype(np.uint8)
# img = add_noise(img)
images = []
for k in range(5):
bgn = k*24
end = (k+1)*24
imgchar = img[:, :, bgn:end]
imgchar = torch.from_numpy(imgchar).float()
if self.transform is not None:
imgchar = self.transform(imgchar)
images.append(imgchar)
return images, idx
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
test_loader = torch.utils.data.DataLoader(
TestLoader('data/raw/sub_test.csv',
# transform=transforms.Compose([
# # transforms.Resize(28),
# transforms.Normalize((0.1307,), (0.3081,)),
# ])),
),
batch_size=args.test_batch_size, shuffle=False, **kwargs)
model = models.Vgg(nchannels=1, nfilters=8, nclasses=13)
if args.cuda:
model = torch.nn.DataParallel(model, device_ids=list(range(1)))
model = model.cuda()
# savedir = Path("./results/2018-04-11_10-50-51")
savedir = sorted(list(Path("./results/").iterdir()))[-1]
save = sorted(list(savedir.glob("**/*.pth")))[-1]
print("Loading file: {}".format(save))
state_dict = torch.load(save)
model.load_state_dict(state_dict)
if args.cuda:
model.cuda()
def test():
print("Running")
model.eval()
lsize = len(test_loader) * args.test_batch_size
results = np.zeros((lsize, 6), dtype=np.int64)
badres = np.zeros((lsize, 5), dtype=np.float64)
for data_list, index in test_loader:
for k, data in enumerate(data_list):
if args.cuda:
data = data.cuda()
data = Variable(data, volatile=True)
output = model(data)
if k in [0, 2, 4]:
pred = output[:, :10].data
predtop = pred.topk(2, dim=1) # get the index of the max log-probability
diff = predtop[0][:, 0] - predtop[0][:, 1]
pred = pred.max(1, keepdim=True)[1]
else:
pred = output[:, 10:].data.max(1, keepdim=True)[1] + 10
badres[index, k] = np.squeeze(diff.cpu().numpy())
results[index, k] = np.squeeze(pred.cpu().numpy())
print("Evaluating")
for k in results:
if k[1] == 12:
if k[3] == 10:
if k[0] == k[2] + k[4]:
k[5] = 1
elif k[3] == 11:
if k[0] == k[2] - k[4]:
k[5] = 1
elif k[3] == 12:
if k[1] == 10:
if k[4] == k[0] + k[2]:
k[5] = 1
elif k[1] == 11:
if k[4] == k[0] - k[2]:
k[5] = 1
# unique, counts = np.unique(k, return_counts=True)
if np.count_nonzero(k == 12) != 1:
k[5] = 3
print("WARN: {} has more than one equals!!".format(k[0]))
if (np.count_nonzero(k == 10) + np.count_nonzero(k == 11)) != 1:
k[5] = 2
print("WARN: {} has more than one operator!!".format(k[0]))
df = pd.DataFrame(results)
df.to_csv("curtis_debug.csv")
sub = pd.DataFrame({"label": df[5]})
sub.to_csv("curtis_submission.csv", index_label="index")
print("Done HAHAHAHAHAHAHA")
questionable = np.argwhere(badres < 4)
for q in questionable:
r = results[q[0]]
print("{:06d}:{} {} {} {} {} {} | {} {}".format(q[0], q[1], r[0], r[1],
r[2], r[3], r[4], r[5], badres[q[0], q[1]]))
test()