-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
311 lines (235 loc) · 10.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import os
import time
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from datasets import get_dataset
from models.LBS import SketchModel
from models.clip_loss import Loss as CLIPLoss
from loss import LBS_loss_fn, l1_loss_fn
from evaluate import eval_sketch
import argparser
from utils.sketch_utils import *
from utils.shared import args, logger, update_args, update_config
from utils.shared import stroke_config as config
clip_loss_fn = None
def unpack_dataloader(datas, train_with_gt=True):
assert (len(datas) == 3 and train_with_gt) or (len(datas) == 2 and not train_with_gt)
if train_with_gt:
imgs_q, imgs_k, labels = datas
img, mask, pos, color = imgs_q
img_k, mask_k, pos_k, color_k = imgs_k
if args.dataset == 'stl10':
mask_ = mask
else:
mask_ = torch.ones_like(mask)
return {
"img": img.to(device, non_blocking=True),
"fore": (img * mask_ + (1 - mask_)).to(device, non_blocking=True),
"back": (img * (1 - mask_) + mask_).to(device, non_blocking=True),
"pos": pos.to(device, non_blocking=True), # [bs, 9, nL, 8]
"color": color.to(device, non_blocking=True), # [bs, 9, nL, 3]
"mask": mask.to(device, non_blocking=True),
"img_k": img_k.to(device, non_blocking=True),
"pos_k": pos_k.to(device, non_blocking=True), # [bs, 9, nL, 8]
"color_k": color_k.to(device, non_blocking=True), # [bs, 9, nL, 3]
"mask_k": mask_k.to(device, non_blocking=True),
"label": [label.to(device, non_blocking=True) for label in labels] if isinstance(labels, list) \
else labels.to(device, non_blocking=True),
}
(img, img_k), label = datas
if isinstance(label, list):
label, _ = label # rotated mnist: label, angle
return {
"img": img.to(device, non_blocking=True),
"img_k": img_k.to(device, non_blocking=True),
"label": label.to(device, non_blocking=True),
}
def train(model, optimizer, scheduler, loaders, train_with_gt=True):
"""Train a model with gt
Args:
model ([type]): [description]
optimizer ([type]): [description]
scheduler ([type]): [description]
loaders ([type]): [description]
"""
train_loader, val_loader, _, eval_test_loader = loaders
image_grids = {}
global clip_loss_fn
clip_loss_fn = CLIPLoss()
if train_with_gt:
image_grids["recon"] = ImageGrid(num_img=10, nrow=6)
image_grids["sequential"] = ImageGrid(num_img=config.n_lines + 1, nrow=5)
else:
image_grids["recon"] = ImageGrid(num_img=8, nrow=2)
image_grids["sequential"] = ImageGrid(num_img=config.n_lines + 1, nrow=5)
best_loss = 1e8
# for in range [1 ~ args.epoch], while epoch 0 is only for visualizing the initialized model.
for epoch in range(args.start_epoch, args.epochs + 1):
progress = epoch / args.epochs
model.set_progress(progress)
### train
if epoch != args.start_epoch:
model.train()
train_epoch(model, optimizer, scheduler, train_loader, train_with_gt, epoch)
### validation
model.eval()
if epoch % args.validate_every == 0:
val_loss, imgs, sketches = validation(model, optimizer, val_loader, train_with_gt, epoch)
if val_loss < best_loss:
best_loss = val_loss
state_dict = model.state_dict()
torch.save(state_dict, logger.basepath + "/model_best.pt")
torch.save(state_dict, logger.basepath + "/model.pt")
torch.save({
"epoch": epoch,
"optim": optimizer.state_dict(),
}, logger.basepath + "/optim.pt")
### tensorboard log
if train_with_gt:
image_grid = image_grids.get("recon")
plot_results_gt(model, image_grid, imgs, sketches, epoch)
else:
image_grid = image_grids.get("recon")
plot_results_l1(model, image_grid, imgs, sketches, epoch)
image_grid = image_grids.get("sequential")
plot_sequential(model, eval_test_loader, image_grid, epoch)
### evaluate with current model & save
if epoch != 0 and epoch % args.evaluate_every == 0:
if not args.no_eval:
eval_task(model, epoch)
state_dict = model.state_dict()
torch.save(state_dict, logger.basepath + f"/model_{epoch}.pt")
def eval_task(model, epoch):
if args.dataset.startswith("clevr"):
tasks = ["rightmost_color", "rightmost_size", "rightmost_shape", "rightmost_material"]
else:
tasks = ["class"]
sketches = eval_sketch(model, tasks)
for task, acc in sketches.items():
logger.scalar_summary(f"eval_{task}", acc, epoch)
def plot_sequential(model, eval_test_loader, image_grid, epoch):
process = model.eval_grid(eval_test_loader.dataset)
process_grid = image_grid.update(process)
logger.figure_summary("validation_process", process_grid, epoch)
def plot_results_l1(model, image_grid, inputs, sketches, epoch):
img = inputs["img"]
sketch = sketches["sketch"]
stacked_results = torch.stack([img[:8], sketch[:8]], dim=1).flatten(0, 1)
img_grid = image_grid.update(stacked_results)
logger.figure_summary("reconstruction", img_grid, epoch)
def plot_results_gt(model, image_grid, inputs, sketches, epoch):
gt_pos = inputs['pos']
gt_color = inputs['color']
pos_final = gt_pos[:, -1]
color_final = gt_color[:, -1]
##### pad background strokes with dummy stroke
num_gt_foreground = pos_final.shape[1]
num_dummy = config.n_lines - num_gt_foreground
padded_stroke = {
"position": torch.cat([pos_final, torch.ones_like(pos_final)[:, :num_dummy]], dim=1).to(args.device),
"color": torch.cat([color_final, torch.ones_like(color_final)[:, :num_dummy]], dim=1).to(args.device),
}
gt_sketch = model.rasterize_stroke(padded_stroke, 'color')
stacked_results = torch.stack([
inputs["img"], inputs["back"], gt_sketch,
sketches["sketch_color"], sketches["sketch_black"], sketches["sketch_background"],
], dim=1).flatten(0, 1)
img_grid = image_grid.update(stacked_results)
logger.figure_summary("reconstruction", img_grid, epoch)
def train_epoch(model, optimizer, scheduler, train_loader, train_with_gt, epoch):
loss_dict = {}
for idx, datas in enumerate(train_loader):
steps = epoch * len(train_loader) + idx
inputs = unpack_dataloader(datas, train_with_gt)
if train_with_gt:
_, loss = LBS_loss_fn(model, optimizer, clip_loss_fn, inputs, train_model=True)
else:
_, loss = l1_loss_fn(model, optimizer, inputs, train_model=True)
loss_dict.update(loss)
loss_dict["lr"] = optimizer.param_groups[0]["lr"]
scheduler.step()
if idx % args.print_every == 0:
logger.log(
f"[Epoch {epoch:3d} iter {idx:4d}] \
[{loss_dict['loss_total'].item():.3f}, {loss_dict['accuracy'].item():.2f}]"
)
for name, values in loss_dict.items():
logger.scalar_summary(name, values, steps)
def validation(model, optimizer, val_loader, train_with_gt, epoch):
val_loss = 0
val_acc = 0
val_count = 0
for idx, datas in enumerate(val_loader):
if idx == 20: # validate for 20 steps
break
inputs = unpack_dataloader(datas, train_with_gt)
batch_size = inputs["img"].shape[0]
with torch.no_grad():
if train_with_gt:
sketches, val_losses = LBS_loss_fn(model, optimizer, clip_loss_fn, inputs, train_model=False)
else:
sketches, val_losses = l1_loss_fn(model, optimizer, inputs, train_model=False)
val_loss += val_losses["loss_total"]
val_acc += val_losses["accuracy"] * batch_size
val_count += batch_size
val_loss /= idx
val_acc /= val_count
logger.scalar_summary("val_loss", val_loss, epoch)
logger.scalar_summary("val_acc", val_acc, epoch)
logger.log(f"[Epoch {epoch:3d}] Val: [{val_loss.item():.3f}, {val_acc.item():.2f}]")
return val_loss, inputs, sketches
def main():
args_ = argparser.parse_arguments()
train_set, val_set, eval_train_set, eval_test_set, image_shape, class_num = get_dataset(args_.dataset, data_root=args_.data_root)
args_.image_size = image_shape[1]
args_.image_num_channel = image_shape[0]
args_.class_num = class_num
stroke_config = argparser.get_stroke_config(args_)
update_args(args_)
update_config(stroke_config)
global device
device = args.device
train_loader = DataLoader(train_set, shuffle=True, num_workers=16, pin_memory=True, batch_size=args.batch)
val_loader = DataLoader(val_set, shuffle=True, num_workers=8, pin_memory=True, batch_size=args.batch)
eval_train_loader = DataLoader(eval_train_set, shuffle=False, num_workers=8, pin_memory=True, batch_size=256)
eval_test_loader = DataLoader(eval_test_set, shuffle=False, num_workers=8, pin_memory=True, batch_size=256)
model = SketchModel()
model = model.to(device)
t_0 = args.epochs * len(train_loader)
optimizer = optim.AdamW(model.parameters(), lr=0, betas=(0.5, 0.999), weight_decay=1e-4)
scheduler = CosineAnnealingWarmUpRestarts(optimizer, eta_max=args.lr, T_0=t_0, T_mult=1, T_up=t_0 // 20, gamma=0.5)
if args.load_path is not None:
checkpoint = torch.load(os.path.join(args.load_path, "model.pt"))
model.load_state_dict(checkpoint)
checkpoint_opt = torch.load(os.path.join(args.load_path, "optim.pt"))["optim"]
optimizer.load_state_dict(checkpoint_opt)
args.start_epoch = torch.load(os.path.join(args.load_path, "optim.pt"))["epoch"]
scheduler.step(args.start_epoch * len(train_loader))
xp_time = time.strftime("%m%d-%H%M%S")
logger.init(
xpid=args.xpid,
tag=f"{args.comment}_seed{args.seed}",
xp_args=args.__dict__,
rootdir="logs",
timestamp=xp_time,
use_tensorboard=(not args.no_tensorboard),
resume=False,
)
args.logdir = logger.basepath
logger.log(model)
logger.log(f"# Params: {count_parameters(model)}")
args.starting_step = 0
if args.dataset.startswith("mnist") or args.dataset.startswith("geoclidean"):
train_with_gt = False
else:
train_with_gt = True
train(
model=model,
optimizer=optimizer,
scheduler=scheduler,
loaders=(train_loader, val_loader, eval_train_loader, eval_test_loader),
train_with_gt=train_with_gt
)
if __name__ == "__main__":
main()