-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathsmlm_datasets.py
executable file
·842 lines (762 loc) · 39.4 KB
/
smlm_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
import random
import os
import numpy as np
import scipy
from PIL import Image
from AnetLib.data.image_utils import RandomRotate, CenterCropNumpy, RandomCropNumpy, PoissonSubsampling, AddGaussianPoissonNoise, GaussianBlurring, AddGaussianNoise, ElasticTransform
from datasets import TUBULIN, NUCLEAR_PORE
from AnetLib.data.file_loader import FileLoader,ImageLoader
from AnetLib.data.image_utils import EnhancedCompose, Merge, Split
from AnetLib.data.image_utils import RandomRotate, CenterCropNumpy, RandomCropNumpy
from AnetLib.data.image_utils import NormalizeNumpy, MaxScaleNumpy
from AnetLib.data.folder_dataset import FolderDataset, SubfolderDataset
from localization_utils import generate_image_pairs_from_csv, SubFolderImagesLoader
DatasetTypeIDs = {'random': -1, 'microtubule': 0, 'nuclear_pore': 1, 'actin': 2, 'mitochondria': 3}
def create_data_sources(name, opt):
np.random.seed(opt.seed)
if type(name) is dict or type(name) is list:
return CompositeDataset(name, opt)
if name == 'TransformedTubulin001':
return TransformedTubulin001(opt)
elif name == 'TransformedTubulin001NB':
# no gaussian blur
return TransformedTubulin001NB(opt)
elif name == 'TransformedTubulin001DenseNB':
# no gaussian blur, dense input
return TransformedTubulin001DenseNB(opt)
elif name == 'TransformedTubulin002':
return TransformedTubulin002(opt)
elif name == 'TransformedTubulin003':
return TransformedTubulin003(opt)
elif name == 'TransformedTubulin004':
return TransformedTubulin004(opt)
elif name == 'TransformedTubulin005':
return TransformedTubulin005(opt)
elif name == 'TransformedLRSR':
return TransformedLRSR(opt)
elif name == 'TransformedLRSR002':
return TransformedLRSR002(opt)
elif name == 'TransformedNuclearPore001':
return TransformedNuclearPore001(opt)
elif name == 'TransformedNuclearPore001Dense':
return TransformedNuclearPore001Dense(opt)
elif name == 'TransformedCSVImages':
return TransformedCSVImages(opt)
elif name == 'TransformedABImages':
return TransformedABImages(opt)
elif name == 'GenericTransformedImages':
return GenericTransformedImages(opt)
else:
raise Exception('unsupported dataset')
class TransformedTubulin001():
def __init__(self, opt):
self.typeID = DatasetTypeIDs['microtubule']
self.tags = ['microtubule', 'simulation']
self.iRot = RandomRotate()
self.iMerge = Merge()
self.iSplit = Split([0, 1], [1, 2])
self.irCropTrain = RandomCropNumpy(size=(opt.fineSize+100, opt.fineSize+100))
self.ioCropTrain = CenterCropNumpy(size=[opt.fineSize, opt.fineSize])
self.iCropTest = CenterCropNumpy(size=(1024, 1024))
self.iElastic = ElasticTransform(alpha=1000, sigma=40)
self.iBlur = GaussianBlurring(sigma=1.5)
self.iPoisson = PoissonSubsampling(peak=['lognormal', -0.5, 0.001])
self.iBG = AddGaussianPoissonNoise(sigma=25, peak=0.06)
self.train_count = 0
self.test_count = 0
self.dim_ordering = opt.dim_ordering
self.repeat = 1
self.opt = opt
def __getitem__(self, key):
if key == 'train':
source_train = TUBULIN('./datasets', train=True, download=True, transform=self.transform_train, repeat=self.repeat)
return source_train
elif key == 'test':
source_test = TUBULIN('./datasets', train=False, download=True, transform=self.transform_test, repeat=self.repeat)
return source_test
else:
raise Exception('only train and test are supported.')
def transform_train(self, imageIO):
img = self.iMerge(imageIO.copy())
img = self.irCropTrain(img)
img = self.iRot(img)
img = self.ioCropTrain(img)
img = self.iElastic(img)
iIm, oIm = self.iSplit(img)
iIm, oIm = self.iBlur(iIm), self.iBlur(oIm)
imgin, imgout = self.iBG(self.iPoisson(iIm)), oIm
if self.dim_ordering == 'channels_first':
imgin, imgout = imgin.transpose((2, 0, 1)), imgout.transpose((2, 0, 1))
else:
assert self.dim_ordering == 'channels_last'
path = str(self.train_count)
self.train_count += 1
return {'A': imgin, 'B': imgout, 'path': path}
def transform_test(self, imageIO):
img = self.iMerge(imageIO.copy())
img = self.irCropTrain(img)
# img = iRot(img)
img = self.ioCropTrain(img)
iIm, oIm = self.iSplit(img)
iIm, oIm = self.iBlur(iIm), self.iBlur(oIm)
imgin, imgout = self.iBG(self.iPoisson(iIm)), oIm
if self.dim_ordering == 'channels_first':
imgin, imgout = imgin.transpose((2, 0, 1)), imgout.transpose((2, 0, 1))
else:
assert self.dim_ordering == 'channels_last'
path = str(self.test_count)
self.test_count += 1
return {'A': imgin, 'B': imgout, 'path': path}
class TransformedTubulin001NB(TransformedTubulin001):
def __init__(self, opt):
super(TransformedTubulin001NB, self).__init__(opt)
self.iBlur = lambda x: x #GaussianBlurring(sigma=1.5)
class TransformedTubulin001DenseNB(TransformedTubulin001):
def __init__(self, opt):
super(TransformedTubulin001DenseNB, self).__init__(opt)
self.iBlur = lambda x: x #GaussianBlurring(sigma=1.5)
self.iPoisson = PoissonSubsampling(peak=['lognormal', 0.8, 1])
class TransformedNuclearPore001(TransformedTubulin001):
def __init__(self, opt):
super(TransformedNuclearPore001, self).__init__(opt)
self.typeID = DatasetTypeIDs['nuclear_pore']
self.tags = ['nuclear_pore', 'simulation']
def __getitem__(self, key):
if key == 'train':
source_train = NUCLEAR_PORE('./datasets', train=True, download=True, transform=self.transform_train, repeat=self.repeat)
return source_train
elif key == 'test':
source_test = NUCLEAR_PORE('./datasets', train=False, download=True, transform=self.transform_test, repeat=self.repeat)
return source_test
else:
raise Exception('only train and test are supported.')
class TransformedNuclearPore001Dense(TransformedNuclearPore001):
def __init__(self, opt):
super(TransformedNuclearPore001Dense, self).__init__(opt)
self.iPoisson = PoissonSubsampling(peak=['lognormal', 0.8, 1])
class TransformedTubulinImages001():
def __init__(self, opt):
self.typeID = DatasetTypeIDs['microtubule']
train_crop_size1 = opt.fineSize * 2
train_crop_size2 = opt.fineSize + 200
train_crop_size3 = opt.fineSize
test_size = opt.fineSize
self.input_clip = (0, 5)
self.output_clip = (2, 100)
# prepare the transforms
self.iMerge = Merge()
self.iElastic = ElasticTransform(alpha=1000, sigma=40)
self.iSplit = Split([0, 1], [1, 2])
self.iRot = RandomRotate()
self.iRCropTrain = RandomCropNumpy(size=(train_crop_size2, train_crop_size2))
self.iCropFTrain = CenterCropNumpy(size=(train_crop_size1, train_crop_size1))
self.iCropTrain = CenterCropNumpy(size=(train_crop_size3, train_crop_size3))
self.iCropTest = CenterCropNumpy(size=(test_size, test_size))
self.ptrain = './datasets/wei-tubulin-ctrl-20170520-images/train'
self.ptest = './datasets/wei-tubulin-ctrl-20170520-images/test'
self.dim_ordering = opt.dim_ordering
self.opt = opt
self.repeat = 30
self.folder_filter = '*.csv'
self.file_extension = '.png'
def __getitem__(self, key):
if key == 'train':
imgfolderLoader = SubFolderImagesLoader(extension=self.file_extension)
source_train = FolderDataset(self.ptrain,
channels = {'image': {'filter': self.folder_filter, 'loader': imgfolderLoader} },
transform = self.transform_train,
recursive=False,
repeat=self.repeat)
return source_train
elif key == 'test':
imgfolderLoader = SubFolderImagesLoader(extension=self.file_extension)
source_test = FolderDataset(self.ptest,
channels = {'image': {'filter': self.folder_filter, 'loader': imgfolderLoader} },
transform = self.transform_test,
recursive=False,
repeat=self.repeat)
return source_test
else:
raise Exception('only train and test are supported.')
def transform_train(self, imageAB):
As, Bs, path = imageAB['image']['A'], imageAB['image']['B'], imageAB['image.path']
histin, histout = random.choice(As).astype('float32'), random.choice(Bs).astype('float32')
histin = np.expand_dims(histin, axis=2) if histin.ndim == 2 else histin
histout = np.expand_dims(histout, axis=2) if histout.ndim == 2 else histout
img = self.iMerge([histin, histout])
img = self.iRCropTrain(img)
img = self.iRot(img)
img = self.iElastic(img)
histin, histout = self.iSplit(img)
output_clip = self.output_clip
histout = (np.clip(histout, output_clip[0]/2, output_clip[1]*2)-output_clip[0]) / (output_clip[1] - output_clip[0])
imgin, imgout = self.iCropTrain(histin), self.iCropTrain(histout)
if self.dim_ordering == 'channels_first':
imgin, imgout = imgin.transpose((2, 0, 1)), imgout.transpose((2, 0, 1))
else:
assert self.dim_ordering == 'channels_last'
return {'A': imgin, 'B': imgout, 'path': path}
def transform_test(self, imageAB):
As, Bs, path = imageAB['image']['A'], imageAB['image']['B'], imageAB['image.path']
histin, histout = random.choice(As).astype('float32'), random.choice(Bs if len(Bs)>0 else As).astype('float32')
histin = np.expand_dims(histin, axis=2) if histin.ndim == 2 else histin
histout = np.expand_dims(histout, axis=2) if histout.ndim == 2 else histout
output_clip = self.output_clip
histout = (np.clip(histout, output_clip[0]/2, output_clip[1]*2)-output_clip[0]) / (output_clip[1] - output_clip[0])
imgin, imgout = self.iCropTest(histin), self.iCropTest(histout)
if self.dim_ordering == 'channels_first':
imgin, imgout = imgin.transpose((2, 0, 1)), imgout.transpose((2, 0, 1))
else:
assert self.dim_ordering == 'channels_last'
return {'A': imgin, 'B': imgout, 'path': path}
class TransformedTubulinImages004(TransformedTubulinImages001):
'''
use max scale and normalization
filter out blank regions
'''
def __init__(self, opt):
super(TransformedTubulinImages004, self).__init__(opt)
self.iBG = lambda x: x # AddGaussianPoissonNoise(sigma=25, peak=['lognormal', -2.5, 0.8])
def transform_train(self, imageAB):
As, Bs, path = imageAB['image']['A'], imageAB['image']['B'], imageAB['image.path']
histin, histout = random.choice(As).astype('float32'), random.choice(Bs).astype('float32')
histin = np.expand_dims(histin, axis=2) if histin.ndim == 2 else histin
histout = np.expand_dims(histout, axis=2) if histout.ndim == 2 else histout
img = self.iMerge([histin, histout])
# find a non-black region
retry = 0
while retry<5:
img_crop = self.iRCropTrain(img)
if img_crop[:, :, 0].sum()>800+np.random.random()*800:
break
retry +=1
if retry>=5:
print('X', end='')
img = img_crop
img = self.iRot(img)
img = self.iElastic(img)
histin, histout = self.iSplit(img)
histin, histout = self.iBG(histin), histout
imgin, imgout = self.iCropTrain(histin), self.iCropTrain(histout)
if self.dim_ordering == 'channels_first':
imgin, imgout = imgin.transpose((2, 0, 1)), imgout.transpose((2, 0, 1))
else:
assert self.dim_ordering == 'channels_last'
return {'A': imgin, 'B': imgout, 'path': path}
def transform_test(self, imageAB):
As, Bs, path = imageAB['image']['A'], imageAB['image']['B'], imageAB['image.path']
histin, histout = random.choice(As).astype('float32'), random.choice(Bs if len(Bs)>0 else As).astype('float32')
histin = np.expand_dims(histin, axis=2) if histin.ndim == 2 else histin
histout = np.expand_dims(histout, axis=2) if histout.ndim == 2 else histout
imgin, imgout = self.iCropTest(histin), self.iCropTest(histout)
if self.dim_ordering == 'channels_first':
imgin, imgout = imgin.transpose((2, 0, 1)), imgout.transpose((2, 0, 1))
else:
assert self.dim_ordering == 'channels_last'
return {'A': imgin, 'B': imgout, 'path': path}
class NoiseCollection001(TransformedTubulinImages004):
def __init__(self, opt, force_generate=False):
super(NoiseCollection001, self).__init__(opt)
self.typeID = DatasetTypeIDs['random']
self.ptrain = './datasets/noise-collection_v0.1.0/train'
self.ptest = './datasets/noise-collection_v0.1.0/test'
def transform_train(self, imageAB):
As, Bs, path = imageAB['image']['A'], imageAB['image']['B'], imageAB['image.path']
histin, histout = random.choice(As).astype('float32'), random.choice(Bs).astype('float32')
histin = np.expand_dims(histin, axis=2) if histin.ndim == 2 else histin
histout = np.expand_dims(histout, axis=2) if histout.ndim == 2 else histout
img = self.iMerge([histin, histout])
img_crop = self.iRCropTrain(img)
img = img_crop
img = self.iRot(img)
img = self.iElastic(img)
img = self.iCropTrain(img)
imgin, imgout = self.iSplit(img)
if self.dim_ordering == 'channels_first':
imgin, imgout = imgin.transpose((2, 0, 1)), imgout.transpose((2, 0, 1))
else:
assert self.dim_ordering == 'channels_last'
return {'A': imgin, 'B': imgout, 'path': path}
class TransformedCSVImages(TransformedTubulinImages004):
def __init__(self, opt, force_generate=False):
super(TransformedCSVImages, self).__init__(opt)
self.ptrain = os.path.join(opt.workdir, '__images__', 'train')
self.ptest = os.path.join(opt.workdir, '__images__', 'test')
self.iSplit = Split([0, 2], [2, 3])
self.test_count = 0
if not os.path.exists(self.ptrain) or force_generate:
generate_image_pairs_from_csv(os.path.join(opt.workdir, 'train'),
self.ptrain,
A_frame=['uniform', 200, 500], B_frame=0.95,
A_frame_limit=(0, 0.5),
B_frame_limit=(2000, 1.0),
image_per_file=30,
target_size=(2560, 2560))
if not os.path.exists(self.ptest) or force_generate:
if not os.path.exists(os.path.join(opt.workdir, 'test')):
return
aframes = list(np.logspace(-3, np.log(1.0), 32)*60000) + [0,]
generate_image_pairs_from_csv(os.path.join(opt.workdir, 'test'),
self.ptest,
A_frame=aframes, B_frame=1.0,
A_frame_limit=(0, 1.0),
B_frame_limit=(0, 1.0),
image_per_file=len(aframes),
target_size=(2560, 2560),
zero_offset=True)
def transform_train(self, imageAB):
As, Bs, LRs, path = imageAB['image']['A'], imageAB['image']['B'], imageAB['image']['LR'], imageAB['image.path']
histin, histout = random.choice(As).astype('float32'), random.choice(Bs).astype('float32')
if len(LRs) == 0:
lrin = np.zeros_like(histin)
else:
lrin = random.choice(LRs).astype('float32')
img = self.iMerge([histin, lrin, histout])
img = self.iRCropTrain(img)
img = self.iRot(img)
img = self.iElastic(img)
histin, histout = self.iSplit(img)
output_clip = self.output_clip
histout = (np.clip(histout, output_clip[0]/2, output_clip[1]*2)-output_clip[0]) / (output_clip[1] - output_clip[0])
imgin, imgout = self.iCropTrain(histin), self.iCropTrain(histout)
if self.dim_ordering == 'channels_first':
imgin, imgout = imgin.transpose((2, 0, 1)), imgout.transpose((2, 0, 1))
else:
assert self.dim_ordering == 'channels_last'
return {'A': imgin, 'B': imgout, 'path': path}
def transform_test(self, imageAB):
As, Bs, LRs, path = imageAB['image']['A'], imageAB['image']['B'], imageAB['image']['LR'], imageAB['image.path']
pathAs = imageAB['image']['pathA']
if self.test_count >= len(As):
self.test_count = 0
path = path + '_' + os.path.split(pathAs[self.test_count%len(As)])[1]
histin, histout= As[self.test_count%len(As)].astype('float32'), (Bs if len(Bs)>0 else As)[self.test_count%len(Bs if len(Bs)>0 else As)].astype('float32')
self.test_count += 1
if len(LRs) == 0:
lrin = np.zeros_like(histin)
else:
lrin = random.choice(LRs).astype('float32')
histin = np.concatenate([histin, lrin], axis=2)
output_clip = self.output_clip
histout = (np.clip(histout, output_clip[0]/2, output_clip[1]*2)-output_clip[0]) / (output_clip[1] - output_clip[0])
imgin, imgout = self.iCropTest(histin), self.iCropTest(histout)
if self.dim_ordering == 'channels_first':
imgin, imgout = imgin.transpose((2, 0, 1)), imgout.transpose((2, 0, 1))
else:
assert self.dim_ordering == 'channels_last'
return {'A': imgin, 'B': imgout, 'path': path}
class TransformedABImages(TransformedCSVImages):
def __init__(self, opt, force_generate=False):
super(TransformedCSVImages, self).__init__(opt)
self.ptrain = os.path.join(opt.workdir, 'train')
self.ptest = os.path.join(opt.workdir, 'test')
self.iSplit = Split([0, 2], [2, 3])
self.test_count = 0
self.folder_filter = '*'
self.file_extension = '.png'
class SubFolderWFImagesLoader(FileLoader):
def __init__(self, drift_correction=False, scale_LR=True):
self.__cache = {}
self.ext = 'tif'
self.drift_correction = drift_correction
self.scale_LR = scale_LR
def load(self, path):
if path not in self.__cache:
self.cache(path)
return self.__cache[path]
def cache(self, path):
Bs = [os.path.join(path, p) for p in os.listdir(path) if p == 'Histograms.tif']
LRs = [os.path.join(path, p) for p in os.listdir(path) if p == 'WF_TMR_calibrated.tif']
ImgBs, PathBs, ImgLRs, PathLRs= [], [], [], []
for p in Bs:
img = np.array(Image.open(p))
img = np.expand_dims(img, axis=2) if img.ndim == 2 else img
ImgBs.append(img)
PathBs.append(p)
for p in LRs:
try:
imgStack = Image.open(p)
indexes = [i for i in range(imgStack.n_frames)]
random.shuffle(indexes)
c = min(len(indexes), 20)
for i in indexes[:c]:
imgStack.seek(i)
img = np.array(imgStack)
dtype = img.dtype
assert img.ndim == 2
if self.drift_correction:
import imreg_dft as ird
from skimage import exposure
b = ImgBs[0][:, :, 0]
b = exposure.equalize_hist(b)
b = scipy.ndimage.filters.gaussian_filter(b, sigma=(6, 6))
b = scipy.misc.imresize(b, img.shape[:2])
ts = ird.translation(b, img)
tvec = ts["tvec"]
# the Transformed IMaGe.
img = ird.transform_img(img, tvec=tvec)
if self.scale_LR == True:
img = scipy.misc.imresize(img, ImgBs[0].shape[:2])
elif type(self.scale_LR) is list:
img = scipy.misc.imresize(img, self.scale_LR)
img = np.expand_dims(img, axis=2)
img = img.astype(dtype)
ImgLRs.append(img)
PathLRs.append(p)
except KeyboardInterrupt:
raise
except Exception as e:
print('error when reading file ', p)
import traceback, sys
traceback.print_exc(file=sys.stdout)
self.__cache[path] = { 'B': ImgBs, 'A':ImgLRs, 'path': path, 'pathB': PathBs, 'pathA': PathLRs}
return True
def __call__(self, path):
if path not in self.__cache:
self.cache(path)
return self.__cache[path].copy()
class TransformedLRSR():
def __init__(self, opt):
self.typeID = DatasetTypeIDs['microtubule']
train_crop_size1 = opt.fineSize * 2
train_crop_size2 = opt.fineSize + 200
train_crop_size3 = opt.fineSize
test_size = opt.fineSize
self.input_clip = (0, 5)
self.output_clip = (2, 100)
# prepare the transforms
self.iMerge = Merge()
self.iElastic = ElasticTransform(alpha=1000, sigma=40)
self.iSplit = Split([0, 1], [1, 2])
self.iRot = RandomRotate()
self.iRCropTrain = RandomCropNumpy(size=(train_crop_size2, train_crop_size2))
self.iCropFTrain = CenterCropNumpy(size=(train_crop_size1, train_crop_size1))
self.iCropTrain = CenterCropNumpy(size=(train_crop_size3, train_crop_size3))
self.iCropTest = CenterCropNumpy(size=(test_size, test_size))
self.ptrain = '../anet-lite/src/datasets/Christian-TMR-IF-v0.1/train'
self.ptest = '../anet-lite/src/datasets/Christian-TMR-IF-v0.1/test'
self.dim_ordering = opt.dim_ordering
self.opt = opt
self.repeat = 30
self.folder_filter = '*'
self.drift_correction = False
self.scale_LR = True
def __getitem__(self, key):
if key == 'train':
imgfolderLoader = SubFolderWFImagesLoader(drift_correction=self.drift_correction, scale_LR=self.scale_LR)
source_train = FolderDataset(self.ptrain,
channels = {'image': {'filter': self.folder_filter, 'loader': imgfolderLoader} },
transform = self.transform_train,
recursive=False,
repeat=self.repeat)
return source_train
elif key == 'test':
imgfolderLoader = SubFolderWFImagesLoader(drift_correction=self.drift_correction, scale_LR=self.scale_LR)
source_test = FolderDataset(self.ptest,
channels = {'image': {'filter': self.folder_filter, 'loader': imgfolderLoader} },
transform = self.transform_test,
recursive=False,
repeat=self.repeat)
return source_test
else:
raise Exception('only train and test are supported.')
def transform_train(self, imageAB):
As, Bs, path = imageAB['image']['A'], imageAB['image']['B'], imageAB['image.path']
histin, histout = random.choice(As).astype('float32'), random.choice(Bs).astype('float32')
histin = np.expand_dims(histin, axis=2) if histin.ndim == 2 else histin
histout = np.expand_dims(histout, axis=2) if histout.ndim == 2 else histout
img = self.iMerge([histin, histout])
img = self.iRCropTrain(img)
img = self.iRot(img)
img = self.iElastic(img)
histin, histout = self.iSplit(img)
output_clip = self.output_clip
histout = (np.clip(histout, output_clip[0]/2, output_clip[1]*2)-output_clip[0]) / (output_clip[1] - output_clip[0])
imgin, imgout = self.iCropTrain(histin), self.iCropTrain(histout)
if self.dim_ordering == 'channels_first':
imgin, imgout = imgin.transpose((2, 0, 1)), imgout.transpose((2, 0, 1))
else:
assert self.dim_ordering == 'channels_last'
return {'A': imgin, 'B': imgout, 'path': path}
def transform_test(self, imageAB):
As, Bs, path = imageAB['image']['A'], imageAB['image']['B'], imageAB['image.path']
histin, histout = random.choice(As).astype('float32'), random.choice(Bs if len(Bs)>0 else As).astype('float32')
histin = np.expand_dims(histin, axis=2) if histin.ndim == 2 else histin
histout = np.expand_dims(histout, axis=2) if histout.ndim == 2 else histout
output_clip = self.output_clip
histout = (np.clip(histout, output_clip[0]/2, output_clip[1]*2)-output_clip[0]) / (output_clip[1] - output_clip[0])
imgin, imgout = self.iCropTest(histin), self.iCropTest(histout)
if self.dim_ordering == 'channels_first':
imgin, imgout = imgin.transpose((2, 0, 1)), imgout.transpose((2, 0, 1))
else:
assert self.dim_ordering == 'channels_last'
return {'A': imgin, 'B': imgout, 'path': path}
class TransformedLRSR002(TransformedLRSR):
def transform_train(self, imageAB):
As, Bs, path = imageAB['image']['A'], imageAB['image']['B'], imageAB['image.path']
histin, histout = random.choice(As).astype('float32'), random.choice(Bs).astype('float32')
histin = np.expand_dims(histin, axis=2) if histin.ndim == 2 else histin
histout = np.expand_dims(histout, axis=2) if histout.ndim == 2 else histout
img = self.iMerge([histin, histout])
img = self.iRCropTrain(img)
img = self.iRot(img)
img = self.iElastic(img)
histin, histout = self.iSplit(img)
output_clip = self.output_clip
histout = (np.clip(histout, output_clip[0]/2, output_clip[1]*2)-output_clip[0]) / (output_clip[1] - output_clip[0])
imgin, imgout = self.iCropTrain(histin), self.iCropTrain(histout)
imgin = scipy.misc.imresize(imgin[:, :, 0], (self.opt.fineSize//4, self.opt.fineSize//4))[:, :, None]
if self.dim_ordering == 'channels_first':
imgin, imgout = imgin.transpose((2, 0, 1)), imgout.transpose((2, 0, 1))
else:
assert self.dim_ordering == 'channels_last'
return {'A': imgin, 'B': imgout, 'path': path}
def transform_test(self, imageAB):
As, Bs, path = imageAB['image']['A'], imageAB['image']['B'], imageAB['image.path']
histin, histout = random.choice(As).astype('float32'), random.choice(Bs if len(Bs)>0 else As).astype('float32')
histin = np.expand_dims(histin, axis=2) if histin.ndim == 2 else histin
histout = np.expand_dims(histout, axis=2) if histout.ndim == 2 else histout
output_clip = self.output_clip
histout = (np.clip(histout, output_clip[0]/2, output_clip[1]*2)-output_clip[0]) / (output_clip[1] - output_clip[0])
imgin, imgout = self.iCropTest(histin), self.iCropTest(histout)
imgin = scipy.misc.imresize(imgin[:, :, 0], (self.opt.fineSize//4, self.opt.fineSize//4))[:, :, None]
if self.dim_ordering == 'channels_first':
imgin, imgout = imgin.transpose((2, 0, 1)), imgout.transpose((2, 0, 1))
else:
assert self.dim_ordering == 'channels_last'
return {'A': imgin, 'B': imgout, 'path': path}
class GenericTransformedImages():
def __init__(self, opt):
train_crop_size1 = int(opt.fineSize * 1.45) #pre-crop
train_crop_size2 = opt.fineSize
train_crop_size3 = opt.fineSize
test_size = opt.fineSize
self.ptrain = os.path.join(opt.workdir, 'train') #'./datasets/Christian-TMR-IF-v0.1/train'
self.pvalid = os.path.join(opt.workdir, 'valid')
self.ptest = os.path.join(opt.workdir, 'test') #'./datasets/Christian-TMR-IF-v0.1/test'
self.input_channels = []
for ch in opt.input_channels.split(','):
name, filter = ch.split('=')
self.input_channels.append((name, {'filter':filter, 'loader':ImageLoader()}, ))
self.output_channels = []
for ch in opt.output_channels.split(','):
name, filter = ch.split('=')
self.output_channels.append((name, {'filter':filter, 'loader':ImageLoader()}, ))
# prepare the transforms
self.iMerge = Merge()
self.iElastic = ElasticTransform(alpha=1000, sigma=40)
self.iSplit = Split([0, len(self.input_channels)], [len(self.input_channels), len(self.input_channels)+len(self.output_channels)])
self.iRCropTrain1 = RandomCropNumpy(size=(train_crop_size1, train_crop_size1))
self.iRot = RandomRotate()
self.iCropTrain2 = CenterCropNumpy(size=(train_crop_size2, train_crop_size2))
self.iCropTest = CenterCropNumpy(size=(test_size, test_size))
self.dim_ordering = opt.dim_ordering
self.opt = opt
self.repeat = 30
self.input_channel_names = [n for n, _ in self.input_channels]
self.output_channel_names = [n for n, _ in self.output_channels]
def __getitem__(self, key):
if key == 'train':
source_train = SubfolderDataset(self.ptrain,
channels = self.input_channels + self.output_channels,
transform = self.transform_train,
repeat=self.repeat)
return source_train
elif key == 'valid':
source_valid = SubfolderDataset(self.pvalid,
channels = self.input_channels + self.output_channels,
transform = self.transform_valid,
repeat=1)
return source_valid
elif key == 'test':
source_test = SubfolderDataset(self.ptest,
channels = self.input_channels,
transform = self.transform_test,
repeat=1)
return source_test
else:
raise Exception('only train and test are supported.')
def transform_train(self, images):
inputs = [np.expand_dims(np.array(images[n]), axis=2) for n in self.input_channel_names]
outputs = [np.expand_dims(np.array(images[n]), axis=2) for n in self.output_channel_names]
ios = self.iMerge(inputs + outputs)
ios = self.iRCropTrain1(ios)
ios = self.iRot(ios)
ios = self.iElastic(ios)
ios = self.iCropTrain2(ios)
inputs, outputs = self.iSplit(ios)
return {'A': inputs, 'B': outputs, 'path': images['__path__']}
def transform_valid(self, images):
inputs = [np.expand_dims(np.array(images[n]), axis=2) for n in self.input_channel_names]
outputs = [np.expand_dims(np.array(images[n]), axis=2) for n in self.output_channel_names]
inputs = self.iCropTest(self.iMerge(inputs))
outputs = self.iCropTest(self.iMerge(outputs))
return {'A': inputs, 'B': outputs, 'path': images['__path__']}
def transform_test(self, images):
inputs = [np.expand_dims(np.array(images[n]), axis=2) for n in self.input_channel_names]
inputs = self.iCropTest(self.iMerge(inputs))
return {'A': inputs, 'path': images['__path__']}
class CompositeRandomDataset():
def __init__(self, datasets, opt, group='test'):
datasets = list(datasets.items())
self.mode = group
self.opt = opt
self.dataset_names = [n for n, p in datasets]
datasets = [(create_data_sources(k, opt) if type(k) is str else k , v) for k, v in datasets ]
self.datasets = [d for d, p, in datasets]
self.dataset_ids = list(set([dds.typeID for dds in self.datasets if dds.typeID != -1]))
self.data_sources = [(d[group], p) for d, p, in datasets]
self.group = group
self.lengths = [len(d) for d, p in self.data_sources]
self.probs = [p for d, p in self.data_sources]
self.probs_acc = []
pc = 0
for p in self.probs:
pc +=p
self.probs_acc.append(pc)
self.probs_max = self.probs_acc[-1]
self.data_type = None
self.tags = None
self.__fpp = None
self.__repeat = False
self.__out = None
self.__additional_source = None
self.__channel_mask = None
self.__callback = None
if self.opt.add_lr_channel:
self.wfBlur = GaussianBlurring(sigma=['uniform', opt.lr_sigma-1.5, opt.lr_sigma+1.5])
self.wfNoise = AddGaussianNoise(mean=0, sigma=['uniform', 0.5, 1.5])
else:
self.wfBlur = None
self.wfNoise = None
def set_callback(self, callback):
self.__callback = callback
def set_addtional_source(self, source):
self.__additional_source = source
def set_data_type(self, data_type=None):
if type(data_type) is str:
typeID = DatasetTypeIDs[data_type]
else:
typeID = data_type
if typeID is not None and self.data_type != typeID:
print('WARNING: typeID is overrided to: {}({})', data_type, typeID)
if self.opt.control_classes is not None:
assert typeID < self.opt.control_classes, 'typeID must be smaller than the control classes number'
self.data_type = typeID
def set_tags(self, tags=None):
self.tags = tags
def set_fpp(self, fpp=None):
self.__fpp = fpp
def set_channel_mask(self, sw=None):
self.__channel_mask = sw
assert len(self.__channel_mask) == self.opt.input_nc
def __getitem__(self, index):
if self.__repeat and self.__out is not None and self.mode == 'train':
out = self.__out
self.__repeat = False
self.__out = None
if 'add_fpp_control' in self.opt and self.opt.add_fpp_control:
out['control'][-1] = 1.0 - out['control'][-1]
else:
selected = 0
c = np.random.random() * self.probs_max
for i, p in enumerate(self.probs_acc):
if c<=p:
selected = i
break
ds = self.datasets[selected]
d, _ = self.data_sources[selected]
if len(self.lengths) == 1:
new_index = index
else:
l = self.lengths[selected]
new_index = np.random.randint(0, l, 1)[0] #int(1.0 * index/len(self) * l)
out = d[new_index].copy()
out['control'] = []
if self.__additional_source is not None and np.random.random()<0.5:
nd = self.__additional_source[np.random.randint(0, len(self.__additional_source), 1)[0]]
if nd['A'].max() <= out['A'].max() or np.random.random()<0.2:
# TODO: make it work with multiple channels
if 'A' in out and 'A' in nd:
out['A'][:, :, :1] += ((nd['A']/nd['A'].max())*(out['A'][:,:,:1].max()*np.random.uniform(0.3, 0.9)))
if 'B' in out and 'B' in nd:
out['B'][:, :, :1] += nd['B'][:, :, :1]
# if 'LR' in out and 'LR' in nd:
# out['LR'] += nd['LR']
added_empty_channel = False
if 'add_lr_channel' in self.opt and self.opt.add_lr_channel and out['A'].shape[2] == self.opt.input_nc-1:
assert self.opt.input_nc > 1
if self.opt.add_lr_channel == 'empty':
out['A'] = np.concatenate([out['A'], np.zeros_like(out['A'])], axis=2)
added_empty_channel = True
elif self.opt.add_lr_channel == 'pseudo':
wf = self.wfBlur(scipy.misc.bytescale(out['B']).astype('float32'))[:, :, 0]
#wf = scipy.misc.imresize(wf, 0.2)
wf = self.wfNoise(wf[:,:,None])
#wf = scipy.misc.imresize(wf, out['A'].shape[:2])[:, :, None]
out['A'] = np.concatenate([out['A'], wf], axis=2)
else:
raise Exception('lr channel mode error')
if 'add_data_type_control' in self.opt and self.opt.add_data_type_control:
typeID = self.data_type if self.data_type is not None else ds.typeID
if typeID == DatasetTypeIDs['random']:
typeID = random.choice(self.dataset_ids)
if self.opt.control_classes is not None:
assert 0 <= typeID < self.opt.control_classes, 'typeID must be smaller than the control classes number'
# from data.normalization import get_norm
# print(typeID, get_norm('mean_std')(np.zeros_like(out['A'][0:1, :, :]) + typeID).mean())
# if ds.dim_ordering == 'channels_first':
# out['A'] = np.concatenate([out['A'], np.zeros_like(out['A'][0:1, :, :]) + typeID], axis=0)
# else:
# out['A'] = np.concatenate([out['A'], np.zeros_like(out['A'][:, :, 0:1]) + typeID], axis=2)
out['control'].append(typeID)
if 'add_tags_control' in self.opt and self.opt.add_tags_control:
tags = self.tags if self.tags is not None else ds.tags
out['tags'] = tags
# add false positive prevention channel
if 'add_fpp_control' in self.opt and self.opt.add_fpp_control:
rw = self.__fpp if self.__fpp is not None else np.random.randint(0, 2)
# if ds.dim_ordering == 'channels_first':
# out['A'] = np.concatenate([out['A'], np.zeros_like(out['A'][0:1, :, :]) + rw], axis=0)
# else:
# out['A'] = np.concatenate([out['A'], np.zeros_like(out['A'][:, :, 0:1]) + rw], axis=2)
out['control'].append(rw)
self.__out = out
self.__repeat = True
if self.__channel_mask is None and self.opt.use_random_channel_mask and self.opt.input_nc>1:
_mask = [1]*self.opt.input_nc
if np.random.random()>0.5 and not added_empty_channel:
_sel = np.random.choice(list(range(self.opt.input_nc)))
_mask[_sel] = 0
print('m', end='')
out['channel_mask'] = _mask
else:
out['channel_mask'] = self.__channel_mask
if len(out['control']) < self.opt.control_nc:
out['control'] = out['control'] + [0]*(self.opt.control_nc-len(out['control']))
assert self.opt.control_nc is None or self.opt.control_nc==0 or len(out['control']) == self.opt.control_nc
if self.__callback is not None:
self.__callback(out)
return out
def __len__(self):
return int(np.array(self.lengths).sum())
class CompositeDataset():
def __init__(self, datasets, opt):
'''
dataset = {'TransformedTubulinImages004': 0.3, 'TransformedTubulinImages001': 0.2}
'''
if type(datasets) is list:
datasets = {d: 1.0/len(datasets) for d in datasets}
else:
assert type(datasets) is dict
self.datasets = datasets
self.opt = opt
def __getitem__(self, key):
if key == 'train':
source_train = CompositeRandomDataset(self.datasets, self.opt, group=key)
return source_train
elif key == 'test':
source_test = CompositeRandomDataset(self.datasets, self.opt, group=key)
return source_test
else:
raise Exception('only train and test are supported.')