Author: M. J. Fromberger
-
Edit Makefile to select compiler and options. The default is to use gcc. You may want to change CC to
clang
instead ofgcc
(and on macOS that what you will get anyway), but you should be able to use the default GCC settings for either.By default, the Makefile assumes you can use 64-bit integer types, even though they were not standard in ISO/IEC 9899:1990. If you cannot, add
-DUSE_32BIT_WORDS
to the compiler options. -
Type
make
ormake test
to build the test driver and run the unit tests. None of these should fail. If they do, see below for how you can report bugs.To build with debugging enabled (and optimization disabled), run
make DEBUG=Y
. This sets the preprocessor macroDEBUG
to 1, and several other things (see Makefile for details).
To use the library in your code, include "imath.h" wherever you intend to use the library's routines. The integer library is just a single source file, so you can compile it into your project in whatever way makes sense. If you wish to use rational arithmetic, you will also need to include "imrat.h".
The basic types defined by the imath library are mpz_t
, an arbitrary
precision signed integer, and mpq_t
, an arbitrary precision signed rational
number. The type mp_int
is a pointer to an mpz_t
, and mp_rat
is a
pointer to an mpq_t
.
Most of the functions in the imath library return a value of type mp_result
.
This is a signed integer type which can be used to convey status information
and also return small values. Any negative value is considered to be a status
message. The following constants are defined for processing these:
Status | Description |
---|---|
MP_OK |
operation successful, all is well (= 0) |
MP_FALSE |
boolean false (= MP_OK ) |
MP_TRUE |
boolean true |
MP_MEMORY |
out of memory |
MP_RANGE |
parameter out of range |
MP_UNDEF |
result is undefined (e.g., division by zero) |
MP_TRUNC |
output value was truncated |
MP_BADARG |
an invalid parameter was passed |
If you obtain a zero or negative value of an mp_result
, you can use the
mp_error_string()
routine to obtain a pointer to a brief human-readable
string describing the error. These strings are statically allocated, so they
need not be freed by the caller; the same strings are re-used from call to
call.
Unless otherwise noted, it is legal to use the same parameter for both inputs and output with most of the functions in this library. For example, you can add a number to itself and replace the original by writing:
mp_int_add(a, a, a); /* a = a + a */
Any cases in which this is not legal will be noted in the function summaries below (if you discover that this is not so, please report it as a bug; I will fix either the function or the documentation :)
Each of the API functions is documented here. The general format of the entries is:
return_type function_name(parameters ...)
- English description.
Unless otherwise noted, any API function that returns mp_result
may be
expected to return MP_OK
, MP_BADARG
, or MP_MEMORY
. Other return values
should be documented in the description. Please let me know if you discover
this is not the case.
The following macros are defined in "imath.h", to define the sizes of the various data types used in the library:
Constant | Description |
---|---|
MP_DIGIT_BIT |
the number of bits in a single mpz_t digit. |
MP_WORD_BIT |
the number of bits in a mpz_t word. |
MP_SMALL_MIN |
the minimum value representable by an mp_small . |
MP_SMALL_MAX |
the maximum value representable by an mp_small . |
MP_USMALL_MAX |
the maximum value representable by an mp_usmall . |
MP_MIN_RADIX |
the minimum radix accepted for base conversion. |
MP_MAX_RADIX |
the maximum radix accepted for base conversion. |
An mp_int
must be initialized before use. By default, an mp_int
is
initialized with a certain minimum amount of storage for digits, and the
storage is expanded automatically as needed. To initialize an mp_int
, use
the following functions:
mp_result mp_int_init(mp_int z);
- Initializes
z
with 1-digit precision and sets it to zero. This function cannot fail unlessz == NULL
.
mp_int mp_int_alloc(void);
- Allocates a fresh zero-valued
mpz_t
on the heap, returning NULL in case of error. The only possible error is out-of-memory.
mp_result mp_int_init_size(mp_int z, mp_size prec);
- Initializes
z
with at leastprec
digits of storage, and sets it to zero. Ifprec
is zero, the default precision is used. In either case the size is rounded up to the nearest multiple of the word size.
mp_result mp_int_init_copy(mp_int z, mp_int old);
- Initializes
z
to be a copy of an already-initialized value inold
. The new copy does not share storage with the original.
mp_result mp_int_init_value(mp_int z, mp_small value);
- Initializes
z
to the specified signedvalue
at default precision.
When you are finished with an mp_int
, you must free the memory it uses:
void mp_int_clear(mp_int z);
- Releases the storage used by
z
.
void mp_int_free(mp_int z);
- Releases the storage used by
z
and alsoz
itself. This should only be used forz
allocated bymp_int_alloc()
.
To set an mp_int
which has already been initialized to a small integer value,
use:
mp_result mp_int_set_value(mp_int z, mp_small value);
- Sets
z
to the value of the specified signedvalue
.
mp_result mp_int_set_uvalue(mp_int z, mp_usmall uvalue);
- Sets
z
to the value of the specified unsignedvalue
.
To copy one initialized mp_int
to another, use:
mp_result mp_int_copy(mp_int a, mp_int c);
- Replaces the value of
c
with a copy of the value ofa
. No new memory is allocated unlessa
has more significant digits thanc
has allocated.
static inline bool mp_int_is_odd(mp_int z);
- Reports whether
z
is odd, having remainder 1 when divided by 2.
static inline bool mp_int_is_even(mp_int z);
- Reports whether
z
is even, having remainder 0 when divided by 2.
void mp_int_zero(mp_int z);
- Sets
z
to zero. The allocated storage ofz
is not changed.
mp_result mp_int_abs(mp_int a, mp_int c);
- Sets
c
to the absolute value ofa
.
mp_result mp_int_neg(mp_int a, mp_int c);
- Sets
c
to the additive inverse (negation) ofa
.
mp_result mp_int_add(mp_int a, mp_int b, mp_int c);
- Sets
c
to the sum ofa
andb
.
mp_result mp_int_add_value(mp_int a, mp_small value, mp_int c);
- Sets
c
to the sum ofa
andvalue
.
mp_result mp_int_sub(mp_int a, mp_int b, mp_int c);
- Sets
c
to the difference ofa
lessb
.
mp_result mp_int_sub_value(mp_int a, mp_small value, mp_int c);
- Sets
c
to the difference ofa
lessvalue
.
mp_result mp_int_mul(mp_int a, mp_int b, mp_int c);
- Sets
c
to the product ofa
andb
.
mp_result mp_int_mul_value(mp_int a, mp_small value, mp_int c);
- Sets
c
to the product ofa
andvalue
.
mp_result mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c);
- Sets
c
to the product ofa
and2^p2
. Requiresp2 >= 0
.
mp_result mp_int_sqr(mp_int a, mp_int c);
- Sets
c
to the square ofa
.
mp_result mp_int_root(mp_int a, mp_small b, mp_int c);
- Sets
c
to the greatest integer not less than theb
th root ofa
, using Newton's root-finding algorithm. It returnsMP_UNDEF
ifa < 0
andb
is even.
static inline mp_result mp_int_sqrt(mp_int a, mp_int c);
- Sets
c
to the greatest integer not less than the square root ofa
. This is a special case ofmp_int_root()
.
mp_result mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r);
-
Sets
q
andr
to the quotent and remainder ofa / b
. Division by powers of 2 is detected and handled efficiently. The remainder is pinned to0 <= r < b
.Either of
q
orr
may be NULL, but not both, andq
andr
may not point to the same value.
mp_result mp_int_div_value(mp_int a, mp_small value, mp_int q, mp_small *r);
- Sets
q
and*r
to the quotent and remainder ofa / value
. Division by powers of 2 is detected and handled efficiently. The remainder is pinned to0 <= *r < b
. Either ofq
orr
may be NULL.
mp_result mp_int_div_pow2(mp_int a, mp_small p2, mp_int q, mp_int r);
- Sets
q
andr
to the quotient and remainder ofa / 2^p2
. This is a special case for division by powers of two that is more efficient than using ordinary division. Note thatmp_int_div()
will automatically handle this case, this function is for cases where you have only the exponent.
mp_result mp_int_mod(mp_int a, mp_int m, mp_int c);
- Sets
c
to the remainder ofa / m
. The remainder is pinned to0 <= c < m
.
static inline mp_result mp_int_mod_value(mp_int a, mp_small value, mp_small* r);
- Sets
*r
to the remainder ofa / value
. The remainder is pinned to0 <= r < value
.
mp_result mp_int_expt(mp_int a, mp_small b, mp_int c);
- Sets
c
to the value ofa
raised to theb
power. It returnsMP_RANGE
ifb < 0
.
mp_result mp_int_expt_value(mp_small a, mp_small b, mp_int c);
- Sets
c
to the value ofa
raised to theb
power. It returnsMP_RANGE
ifb < 0
.
mp_result mp_int_expt_full(mp_int a, mp_int b, mp_int c);
- Sets
c
to the value ofa
raised to theb
power. It returnsMP_RANGE
) ifb < 0
.
Unless otherwise specified, comparison between values x
and y
returns a
comparator, an integer value < 0 if x
is less than y
, 0 if x
is equal
to y
, and > 0 if x
is greater than y
.
int mp_int_compare(mp_int a, mp_int b);
- Returns the comparator of
a
andb
.
int mp_int_compare_unsigned(mp_int a, mp_int b);
- Returns the comparator of the magnitudes of
a
andb
, disregarding their signs. Neithera
norb
is modified by the comparison.
int mp_int_compare_zero(mp_int z);
- Returns the comparator of
z
and zero.
int mp_int_compare_value(mp_int z, mp_small v);
- Returns the comparator of
z
and the signed valuev
.
int mp_int_compare_uvalue(mp_int z, mp_usmall uv);
- Returns the comparator of
z
and the unsigned valueuv
.
bool mp_int_divisible_value(mp_int a, mp_small v);
- Reports whether
a
is divisible byv
.
int mp_int_is_pow2(mp_int z);
- Returns
k >= 0
such thatz
is2^k
, if such ak
exists. If no suchk
exists, the function returns -1.
mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c);
- Sets
c
to the value ofa
raised to theb
power, reduced modulom
. It returnsMP_RANGE
ifb < 0
orMP_UNDEF
ifm == 0
.
mp_result mp_int_exptmod_evalue(mp_int a, mp_small value, mp_int m, mp_int c);
- Sets
c
to the value ofa
raised to thevalue
power, modulom
. It returnsMP_RANGE
ifvalue < 0
orMP_UNDEF
ifm == 0
.
mp_result mp_int_exptmod_bvalue(mp_small value, mp_int b, mp_int m, mp_int c);
- Sets
c
to the value ofvalue
raised to theb
power, modulom
. It returnsMP_RANGE
ifb < 0
orMP_UNDEF
ifm == 0
.
mp_result mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c);
-
Sets
c
to the value ofa
raised to theb
power, reduced modulom
, given a precomputed reduction constantmu
defined for Barrett's modular reduction algorithm.It returns
MP_RANGE
ifb < 0
orMP_UNDEF
ifm == 0
.
mp_result mp_int_redux_const(mp_int m, mp_int c);
- Sets
c
to the reduction constant for Barrett reduction by modulusm
. Requires thatc
andm
point to distinct locations.
mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c);
-
Sets
c
to the multiplicative inverse ofa
modulom
, if it exists. The least non-negative representative of the congruence class is computed.It returns
MP_UNDEF
if the inverse does not exist, orMP_RANGE
ifa == 0
orm <= 0
.
mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c);
-
Sets
c
to the greatest common divisor ofa
andb
.It returns
MP_UNDEF
if the GCD is undefined, such as for example ifa
andb
are both zero.
mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c, mp_int x, mp_int y);
-
Sets
c
to the greatest common divisor ofa
andb
, and setsx
andy
to values satisfying Bezout's identitygcd(a, b) = ax + by
.It returns
MP_UNDEF
if the GCD is undefined, such as for example ifa
andb
are both zero.
mp_result mp_int_lcm(mp_int a, mp_int b, mp_int c);
-
Sets
c
to the least common multiple ofa
andb
.It returns
MP_UNDEF
if the LCM is undefined, such as for example ifa
andb
are both zero.
mp_result mp_int_to_int(mp_int z, mp_small *out);
- Returns
MP_OK
ifz
is representable asmp_small
, elseMP_RANGE
. Ifout
is not NULL,*out
is set to the value ofz
whenMP_OK
.
mp_result mp_int_to_uint(mp_int z, mp_usmall *out);
- Returns
MP_OK
ifz
is representable asmp_usmall
, orMP_RANGE
. Ifout
is not NULL,*out
is set to the value ofz
whenMP_OK
.
mp_result mp_int_to_string(mp_int z, mp_size radix, char *str, int limit);
-
Converts
z
to a zero-terminated string of characters in the specifiedradix
, writing at mostlimit
characters tostr
including the terminating NUL value. A leading-
is used to indicate a negative value.Returns
MP_TRUNC
iflimit
was to small to write all ofz
. RequiresMP_MIN_RADIX <= radix <= MP_MAX_RADIX
.
mp_result mp_int_string_len(mp_int z, mp_size radix);
- Reports the minimum number of characters required to represent
z
as a zero-terminated string in the givenradix
. RequiresMP_MIN_RADIX <= radix <= MP_MAX_RADIX
.
mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str);
-
Reads a string of ASCII digits in the specified
radix
from the zero terminatedstr
provided intoz
. For values ofradix > 10
, the lettersA
..Z
ora
..z
are accepted. Letters are interpreted without respect to case.Leading whitespace is ignored, and a leading
+
or-
is interpreted as a sign flag. Processing stops when a NUL or any other character out of range for a digit in the given radix is encountered.If the whole string was consumed,
MP_OK
is returned; otherwiseMP_TRUNC
. is returned.Requires
MP_MIN_RADIX <= radix <= MP_MAX_RADIX
.
mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end);
-
Reads a string of ASCII digits in the specified
radix
from the zero terminatedstr
provided intoz
. For values ofradix > 10
, the lettersA
..Z
ora
..z
are accepted. Letters are interpreted without respect to case.Leading whitespace is ignored, and a leading
+
or-
is interpreted as a sign flag. Processing stops when a NUL or any other character out of range for a digit in the given radix is encountered.If the whole string was consumed,
MP_OK
is returned; otherwiseMP_TRUNC
. is returned. Ifend
is not NULL,*end
is set to point to the first unconsumed byte of the input string (the NUL byte if the whole string was consumed). This emulates the behavior of the standard Cstrtol()
function.Requires
MP_MIN_RADIX <= radix <= MP_MAX_RADIX
.
mp_result mp_int_count_bits(mp_int z);
- Returns the number of significant bits in
z
.
mp_result mp_int_to_binary(mp_int z, unsigned char *buf, int limit);
-
Converts
z
to 2's complement binary, writing at mostlimit
bytes into the givenbuf
. ReturnsMP_TRUNC
if the buffer limit was too small to contain the whole value. If this occurs, the contents of buf will be effectively garbage, as the function uses the buffer as scratch space.The binary representation of
z
is in base-256 with digits ordered from most significant to least significant (network byte ordering). The high-order bit of the first byte is set for negative values, clear for non-negative values.As a result, non-negative values will be padded with a leading zero byte if the high-order byte of the base-256 magnitude is set. This extra byte is accounted for by the
mp_int_binary_len()
function.
mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len);
- Reads a 2's complement binary value from
buf
intoz
, wherelen
is the length of the buffer. The contents ofbuf
may be overwritten during processing, although they will be restored when the function returns.
mp_result mp_int_binary_len(mp_int z);
- Returns the number of bytes to represent
z
in 2's complement binary.
mp_result mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit);
-
Converts the magnitude of
z
to unsigned binary, writing at mostlimit
bytes into the givenbuf
. The sign ofz
is ignored, butz
is not modified. ReturnsMP_TRUNC
if the buffer limit was too small to contain the whole value. If this occurs, the contents ofbuf
will be effectively garbage, as the function uses the buffer as scratch space during conversion.The binary representation of
z
is in base-256 with digits ordered from most significant to least significant (network byte ordering).
mp_result mp_int_read_unsigned(mp_int z, unsigned char *buf, int len);
- Reads an unsigned binary value from
buf
intoz
, wherelen
is the length of the buffer. The contents ofbuf
are not modified during processing.
mp_result mp_int_unsigned_len(mp_int z);
- Returns the number of bytes required to represent
z
as an unsigned binary value in base 256.
Ordinarily, integer multiplication and squaring are done using the simple quadratic "schoolbook" algorithm. However, for sufficiently large values, there is a more efficient algorithm usually attributed to Karatsuba and Ofman that is usually faster. See Knuth Vol. 2 for more details about how this algorithm works.
The breakpoint between the "normal" and the recursive algorithm is controlled
by a static digit threshold defined in imath.c
. Values with fewer significant
digits use the standard algorithm. This value can be modified by calling
mp_int_multiply_threshold(n)
. The imtimer
program and the
findthreshold.py
script (Python) can help you find a suitable value for for
your particular platform.
const char *mp_error_string(mp_result res);
- Returns a pointer to a brief, human-readable, zero-terminated string
describing
res
. The returned string is statically allocated and must not be freed by the caller.
mp_result mp_rat_init(mp_rat r);
- Initializes
r
with 1-digit precision and sets it to zero. This function cannot fail unlessr
is NULL.
mp_rat mp_rat_alloc(void);
- Allocates a fresh zero-valued
mpq_t
on the heap, returning NULL in case of error. The only possible error is out-of-memory.
mp_result mp_rat_reduce(mp_rat r);
-
Reduces
r
in-place to lowest terms and canonical form.Zero is represented as 0/1, one as 1/1, and signs are adjusted so that the sign of the value is carried by the numerator.
mp_result mp_rat_init_size(mp_rat r, mp_size n_prec, mp_size d_prec);
-
Initializes
r
with at leastn_prec
digits of storage for the numerator andd_prec
digits of storage for the denominator, and value zero.If either precision is zero, the default precision is used, rounded up to the nearest word size.
mp_result mp_rat_init_copy(mp_rat r, mp_rat old);
- Initializes
r
to be a copy of an already-initialized value inold
. The new copy does not share storage with the original.
mp_result mp_rat_set_value(mp_rat r, mp_small numer, mp_small denom);
- Sets the value of
r
to the ratio of signednumer
to signeddenom
. It returnsMP_UNDEF
ifdenom
is zero.
mp_result mp_rat_set_uvalue(mp_rat r, mp_usmall numer, mp_usmall denom);
- Sets the value of
r
to the ratio of unsignednumer
to unsigneddenom
. It returnsMP_UNDEF
ifdenom
is zero.
void mp_rat_clear(mp_rat r);
- Releases the storage used by
r
.
void mp_rat_free(mp_rat r);
- Releases the storage used by
r
and alsor
itself. This should only be used forr
allocated bymp_rat_alloc()
.
mp_result mp_rat_numer(mp_rat r, mp_int z);
- Sets
z
to a copy of the numerator ofr
.
mp_int mp_rat_numer_ref(mp_rat r);
- Returns a pointer to the numerator of
r
.
mp_result mp_rat_denom(mp_rat r, mp_int z);
- Sets
z
to a copy of the denominator ofr
.
mp_int mp_rat_denom_ref(mp_rat r);
- Returns a pointer to the denominator of
r
.
mp_sign mp_rat_sign(mp_rat r);
- Reports the sign of
r
.
mp_result mp_rat_copy(mp_rat a, mp_rat c);
- Sets
c
to a copy of the value ofa
. No new memory is allocated unless a term ofa
has more significant digits than the corresponding term ofc
has allocated.
void mp_rat_zero(mp_rat r);
- Sets
r
to zero. The allocated storage ofr
is not changed.
mp_result mp_rat_abs(mp_rat a, mp_rat c);
- Sets
c
to the absolute value ofa
.
mp_result mp_rat_neg(mp_rat a, mp_rat c);
- Sets
c
to the absolute value ofa
.
mp_result mp_rat_recip(mp_rat a, mp_rat c);
- Sets
c
to the reciprocal ofa
if the reciprocal is defined. It returnsMP_UNDEF
ifa
is zero.
mp_result mp_rat_add(mp_rat a, mp_rat b, mp_rat c);
- Sets
c
to the sum ofa
andb
.
mp_result mp_rat_sub(mp_rat a, mp_rat b, mp_rat c);
- Sets
c
to the difference ofa
lessb
.
mp_result mp_rat_mul(mp_rat a, mp_rat b, mp_rat c);
- Sets
c
to the product ofa
andb
.
mp_result mp_rat_div(mp_rat a, mp_rat b, mp_rat c);
- Sets
c
to the ratioa / b
if that ratio is defined. It returnsMP_UNDEF
ifb
is zero.
mp_result mp_rat_add_int(mp_rat a, mp_int b, mp_rat c);
- Sets
c
to the sum ofa
and integerb
.
mp_result mp_rat_sub_int(mp_rat a, mp_int b, mp_rat c);
- Sets
c
to the difference ofa
less integerb
.
mp_result mp_rat_mul_int(mp_rat a, mp_int b, mp_rat c);
- Sets
c
to the product ofa
and integerb
.
mp_result mp_rat_div_int(mp_rat a, mp_int b, mp_rat c);
- Sets
c
to the ratioa / b
if that ratio is defined. It returnsMP_UNDEF
ifb
is zero.
mp_result mp_rat_expt(mp_rat a, mp_small b, mp_rat c);
- Sets
c
to the value ofa
raised to theb
power. It returnsMP_RANGE
ifb < 0
.
int mp_rat_compare(mp_rat a, mp_rat b);
- Returns the comparator of
a
andb
.
int mp_rat_compare_unsigned(mp_rat a, mp_rat b);
- Returns the comparator of the magnitudes of
a
andb
, disregarding their signs. Neithera
norb
is modified by the comparison.
int mp_rat_compare_zero(mp_rat r);
- Returns the comparator of
r
and zero.
int mp_rat_compare_value(mp_rat r, mp_small n, mp_small d);
- Returns the comparator of
r
and the signed ration / d
. It returnsMP_UNDEF
ifd
is zero.
bool mp_rat_is_integer(mp_rat r);
- Reports whether
r
is an integer, having canonical denominator 1.
mp_result mp_rat_to_ints(mp_rat r, mp_small *num, mp_small *den);
- Reports whether the numerator and denominator of
r
can be represented as small signed integers, and if so stores the corresponding values tonum
andden
. It returnsMP_RANGE
if either cannot be so represented.
mp_result mp_rat_to_string(mp_rat r, mp_size radix, char *str, int limit);
- Converts
r
to a zero-terminated string of the format"n/d"
withn
andd
in the specified radix and writing no more thanlimit
bytes to the given output bufferstr
. The output of the numerator includes a sign flag ifr
is negative. RequiresMP_MIN_RADIX <= radix <= MP_MAX_RADIX
.
mp_result mp_rat_to_decimal(mp_rat r, mp_size radix, mp_size prec, mp_round_mode round, char *str, int limit);
-
Converts the value of
r
to a string in decimal-point notation with the specified radix, writing no more thanlimit
bytes of data to the given output buffer. It generatesprec
digits of precision, and requiresMP_MIN_RADIX <= radix <= MP_MAX_RADIX
.Ratios usually must be rounded when they are being converted for output as a decimal value. There are four rounding modes currently supported:
MP_ROUND_DOWN Truncates the value toward zero. Example: 12.009 to 2dp becomes 12.00
MP_ROUND_UP Rounds the value away from zero: Example: 12.001 to 2dp becomes 12.01, but 12.000 to 2dp remains 12.00
MP_ROUND_HALF_DOWN Rounds the value to nearest digit, half goes toward zero. Example: 12.005 to 2dp becomes 12.00, but 12.006 to 2dp becomes 12.01
MP_ROUND_HALF_UP Rounds the value to nearest digit, half rounds upward. Example: 12.005 to 2dp becomes 12.01, but 12.004 to 2dp becomes 12.00
mp_result mp_rat_string_len(mp_rat r, mp_size radix);
- Reports the minimum number of characters required to represent
r
as a zero-terminated string in the givenradix
. RequiresMP_MIN_RADIX <= radix <= MP_MAX_RADIX
.
mp_result mp_rat_decimal_len(mp_rat r, mp_size radix, mp_size prec);
- Reports the length in bytes of the buffer needed to convert
r
using themp_rat_to_decimal()
function with the specifiedradix
andprec
. The buffer size estimate may slightly exceed the actual required capacity.
mp_result mp_rat_read_string(mp_rat r, mp_size radix, const char *str);
- Sets
r
to the value represented by a zero-terminated stringstr
in the format"n/d"
including a sign flag. It returnsMP_UNDEF
if the encoded denominator has value zero.
mp_result mp_rat_read_cstring(mp_rat r, mp_size radix, const char *str, char **end);
- Sets
r
to the value represented by a zero-terminated stringstr
in the format"n/d"
including a sign flag. It returnsMP_UNDEF
if the encoded denominator has value zero. Ifend
is not NULL then*end
is set to point to the first unconsumed character in the string, after parsing.
mp_result mp_rat_read_ustring(mp_rat r, mp_size radix, const char *str, char **end);
-
Sets
r
to the value represented by a zero-terminated stringstr
having one of the following formats, each with an optional leading sign flag:n : integer format, e.g. "123" n/d : ratio format, e.g., "-12/5" z.ffff : decimal format, e.g., "1.627"
It returns
MP_UNDEF
if the effective denominator is zero. Ifend
is not NULL then*end
is set to point to the first unconsumed character in the string, after parsing.
mp_result mp_rat_read_decimal(mp_rat r, mp_size radix, const char *str);
- Sets
r
to the value represented by a zero-terminated stringstr
in the format"z.ffff"
including a sign flag. It returnsMP_UNDEF
if the effective denominator.
mp_result mp_rat_read_cdecimal(mp_rat r, mp_size radix, const char *str, char **end);
- Sets
r
to the value represented by a zero-terminated stringstr
in the format"z.ffff"
including a sign flag. It returnsMP_UNDEF
if the effective denominator. Ifend
is not NULL then*end
is set to point to the first unconsumed character in the string, after parsing.
NOTE: You do not need to read this section to use IMath. This is provided for the benefit of developers wishing to extend or modify the internals of the library.
IMath uses a signed magnitude representation for arbitrary precision integers. The magnitude is represented as an array of radix-R digits in increasing order of significance; the value of R is chosen to be half the size of the largest available unsigned integer type, so typically 16 or 32 bits. Digits are represented as mp_digit, which must be an unsigned integral type.
Digit arrays are allocated using malloc(3)
and realloc(3)
. Because this
can be an expensive operation, the library takes pains to avoid allocation as
much as possible. For this reason, the mpz_t
structure distinguishes between
how many digits are allocated and how many digits are actually consumed by the
representation. The fields of an mpz_t
are:
mp_digit single; /* single-digit value (see note) */
mp_digit *digits; /* array of digits */
mp_size alloc; /* how many digits are allocated */
mp_size used; /* how many digits are in use */
mp_sign sign; /* the sign of the value */
The elements of digits
at indices less than used
are the significant
figures of the value; the elements at indices greater than or equal to used
are undefined (and may contain garbage). At all times, used
must be at least
1 and at most alloc
.
To avoid interaction with the memory allocator, single-digit values are stored
directly in the mpz_t
structure, in the single
field. The semantics of
access are the same as the more general case.
The number of digits allocated for an mpz_t
is referred to in the library
documentation as its "precision". Operations that affect an mpz_t
cause
precision to increase as needed. In any case, all allocations are measured in
digits, and rounded up to the nearest mp_word
boundary. There is a default
minimum precision stored as a static constant default_precision (imath.c
).
This value can be set using mp_int_default_precision(n)
.
Note that the allocated size of an mpz_t
can only grow; the library never
reallocates in order to decrease the size. A simple way to do so explicitly is
to use mp_int_init_copy()
, as in:
mpz_t big, new;
/* ... */
mp_int_init_copy(&new, &big);
mp_int_swap(&new, &big);
mp_int_clear(&new);
The value of sign
is 0 for positive values and zero, 1 for negative values.
Constants MP_ZPOS
and MP_NEG
are defined for these; no other sign values
are used.
If you are adding to this library, you should be careful to preserve the
convention that inputs and outputs can overlap, as described above. So, for
example, mp_int_add(a, a, a)
is legal. Often, this means you must maintain
one or more temporary mpz_t structures for intermediate values. The private
macros DECLARE_TEMP(N)
, CLEANUP_TEMP()
, and TEMP(K)
can be used to
maintain a conventional structure like this:
{
/* Declare how many temp values you need.
Use TEMP(i) to access the ith value (0-indexed). */
DECLARE_TEMP(8);
...
/* Perform actions that must return MP_OK or fail. */
REQUIRE(mp_int_copy(x, TEMP(1)));
...
REQUIRE(mp_int_expt(TEMP(1), TEMP(2), TEMP(3)));
...
/* You can also use REQUIRE directly for more complex cases. */
if (some_difficult_question(TEMP(3)) != answer(x)) {
REQUIRE(MP_RANGE); /* falls through to cleanup (below) */
}
/* Ensure temporary values are cleaned up at exit.
If control reaches here via a REQUIRE failure, the code below
the cleanup will not be executed.
*/
CLEANUP_TEMP();
return MP_OK;
}
Under the covers, these macros are just maintaining an array of mpz_t
values,
and a jump label to handle cleanup. You may only have one DECLARE_TEMP
and
its corresponding CLEANUP_TEMP
per function body.
"Small" integer values are represented by the types mp_small
and mp_usmall
,
which are mapped to appropriately-sized types on the host system. The default
for mp_small
is "long" and the default for mp_usmall
is "unsigned long".
You may change these, provided you insure that mp_small
is signed and
mp_usmall
is unsigned. You will also need to adjust the size macros:
MP_SMALL_MIN, MP_SMALL_MAX
MP_USMALL_MIN, MP_USMALL_MAX
... which are defined in <imath.h>
, if you change these.
Rational numbers are represented using a pair of arbitrary precision integers, with the convention that the sign of the numerator is the sign of the rational value, and that the result of any rational operation is always represented in lowest terms. The canonical representation for rational zero is 0/1. See "imrat.h".
Test vectors are included in the tests/
subdirectory of the imath
distribution. When you run make test
, it builds the imtest
program and
runs all available test vectors. If any tests fail, you will get a line like
this:
x y FAILED v
Here, x is the line number of the test which failed, y is index of the test within the file, and v is the value(s) actually computed. The name of the file is printed at the beginning of each test, so you can find out what test vector failed by executing the following (with x, y, and v replaced by the above values, and where "foo.t" is the name of the test file that was being processed at the time):
% tail +x tests/foo.t | head -1
None of the tests should fail (but see Note 2); if any do, it
probably indicates a bug in the library (or at the very least, some assumption
I made which I shouldn't have). Please file an
issue, including the FAILED
test line(s), as well as the output of the above tail
command (so I know what
inputs caused the failure).
If you build with the preprocessor symbol DEBUG
defined as a positive
integer, the digit allocators (s_alloc
, s_realloc
) fill all new buffers
with the value 0xdeadbeefabad1dea
, or as much of it as will fit in a digit,
so that you can more easily catch uninitialized reads in the debugger.
-
You can generally use the same variables for both input and output. One exception is that you may not use the same variable for both the quotient and the remainder of
mp_int_div()
. -
Many of the tests for this library were written under the assumption that the
mp_small
type is 32 bits or more. If you compile with a smaller type, you may seeMP_RANGE
errors in some of the tests that otherwise pass (due to conversion failures). Also, the pi generator (pi.c) will not work correctly ifmp_small
is too short, as its algorithm for arc tangent is fairly simple-minded.
The IMath library was written by Michael J. Fromberger.
If you discover any bugs or testing failures, please open an
issue. Please be sure to
include a complete description of what went wrong, and if possible, a test
vector for imtest
and/or a minimal test program that will demonstrate the bug
on your system. Please also let me know what hardware, operating system, and
compiler you're using.
The algorithms used in this library came from Vol. 2 of Donald Knuth's "The Art of Computer Programming" (Seminumerical Algorithms). Thanks to Nelson Bolyard, Bryan Olson, Tom St. Denis, Tushar Udeshi, and Eric Silva for excellent feedback on earlier versions of this code. Special thanks to Jonathan Shapiro for some very helpful design advice, as well as feedback and some clever ideas for improving performance in some common use cases.
IMath is Copyright 2002-2009 Michael J. Fromberger You may use it subject to the following Licensing Terms:
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.