
Marlowe Specification
Version 3

Pablo Lamela Seijas Alexander Nemish David Smith

Simon Thompson Hernán Rajchert Brian Bush

December 31, 1979

Contents

1 Marlowe 2
1.1 Introduction . 2
1.2 The Marlowe Model . 3

1.2.1 Data types . 3
1.2.2 Quiescent . 3
1.2.3 Participants, accounts and state 3
1.2.4 Core and Extended . 4

1.3 Specification generation and nomenclature 4
1.4 Blockchain agnostic . 4

2 Marlowe Core 6
2.1 Types . 6

2.1.1 Participants, roles and addresses 6
2.1.2 Multi-Asset token . 7
2.1.3 Accounts . 7
2.1.4 Choices . 8
2.1.5 Values and Observations 8
2.1.6 Actions and inputs . 9
2.1.7 Contracts . 10
2.1.8 State and Environment 12

2.2 Semantics . 12
2.2.1 Compute Transaction 13
2.2.2 Fix Interval . 14
2.2.3 Apply All Inputs . 14
2.2.4 Reduce Contract Until Quiescent 15
2.2.5 Reduction Loop . 16
2.2.6 Reduce Contract Step 16
2.2.7 Apply Input . 18
2.2.8 Apply Cases . 19
2.2.9 Utilities . 20
2.2.10 Evaluate Value . 21

1

2.2.11 Evaluate Observation 24

3 Marlowe Guarantees 26
3.1 Money Preservation . 26
3.2 Contracts Always Close . 27
3.3 Positive Accounts . 27
3.4 Quiescent Result . 28
3.5 Reducing a Contract until Quiescence Is Idempotent 28
3.6 Split Transactions Into Single Input Does Not Affect the Result 28

3.6.1 Termination Proof . 29
3.6.2 All Contracts Have a Maximum Time 29
3.6.3 Contract Does Not Hold Funds After it Closes 29
3.6.4 Transaction Bound . 29

2

Chapter 1

Marlowe

1.1 Introduction
Marlowe is a special purpose or domain-specific language (DSL) that is de-
signed to be usable by someone who is expert in the field of financial con-
tracts, somewhat lessening the need for programming skills.

Marlowe is modelled on special-purpose financial contract languages popu-
larised in the last decade or so by academics and enterprises such as LexiFi
1, which provides contract software in the financial sector. In developing
Marlowe, we have adapted these languages to work on any blockchain §1.4.

Where we differ from non-blockchain approaches is in how we make sure
that the contract is followed. In the smart contracts world there is a saying
“Code is law”, which implies that the assets deposited in a contract will
follow its logic, without the ability of a human to change the rules. This
applies for both the intended and not intended behaviour (in the form of
bugs or exploits).

To reduce the probability of not intended behaviour, the Marlowe DSL is
designed with simplicity in mind. Without loops, recursion, or other features
that general purposes smart-contract languages (E.g: Plutus, Solidity) have,
it is easier to make certain claims. Each Marlowe contract can be reasoned
with a static analizer to avoid common pitfalls such as trying to Pay more
money than the available. And the executable semantics that dictates the
logic of all Marlowe contracts is formalized with the proof-assistant Isabelle.

Chapter §1 provides an overview of the Marlowe language. Chapter §2 defines
the Core language and semantics in detail. Chapter §3 presents proofs that

1https://www.lexifi.com/

3

https://www.lexifi.com/

guarantee that Marlowe contracts possess properties desirable for financial
agreements.

1.2 The Marlowe Model
Marlowe Contracts describe a series of steps, typically by describing the first
step, together with another (sub-)contract that describes what to do next.
For example, the contract Pay a p t v c says “make a payment of v number
of tokens t to the party p from the account a, and then follow the contract
c”. We call c the continuation of the contract. All paths of the contract are
made explicit this way, and each Contract term is executed at most once.

1.2.1 Data types
The Values and Observations §2.1.5 only works with integers and booleans
respectively. There are no custom data types, records, tuples, nor string ma-
nipulation. There are also no floating point numbers, so in order to represent
currencies it is recommended to work with cents. Dates are only used in the
context of Timeouts and they are absolute, but it is likely we’ll add relative
times in a future version.

1.2.2 Quiescent
The blockchain can’t force a participant to make a transaction. To avoid
having a participant blocking the execution of a contract, whenever an Input
is expected, there is a Timeout with a contingency continuation. For each
step, we can know in advance how long it can last, and we can extend this to
know the maximum duration and the amount of transactions of a contract.

1.2.3 Participants, accounts and state
Once we define a contract, we can see how many participants it will have.
The number of participants is fixed for the duration of the contract, but there
are mechanisms to trade participation §2.1.1.

Each participant has an internal account that allows the contract to define
default owner for assets §2.1.3. Whenever a Party deposits an asset in the
contract, they need to decide the default owner of that asset. Payments can
be made to transfer the default owner or to take the asset out of the contract.

4

If the contract is closed, the default owner can redeem the assets available in
their internal accounts.

The accounts, choices, and variables stored in the State §2.1.8 are global to
that contract.

1.2.4 Core and Extended
The set of types and functions that conform the semantics executed in the
blockchain is called Marlowe Core, and it’s formalized in chapter §2. To
improve usability, there is another set of types and functions that compile to
core, and it is called Marlowe Extended.

In the first version of the extended language, the only modification to the
DSL is the addition of template parameters. These allows an initial form
of contract reutilization, allowing to instantiate the same contract with dif-
ferent Values and Timeouts. For the moment, the extended language is not
formalized in this specification but it will be added in the future

1.3 Specification generation and nomenclature

The Marlowe specification is formalized using the proof assistant Isabelle2.
The code is written in a literate programming style and this document is
generated from the proofs. This improves code documentation and lowers
the probability of stale information.

As a drawback, the code/doc organization is more rigid. Isabelle require us to
define code in a bottom-up approach, having to define first the dependencies
and later the most complex structures.

The notation is closer to a Mathematical formula than a functional program-
ming language. There are some configurations in the SpecificationLatexSugar
theory file that makes the output be closer to code.

1.4 Blockchain agnostic
Marlowe is currently implemented on the Cardano Blockchain, but it is de-
signed to be Blockchain agnostic.

2https://isabelle.in.tum.de/

5

https://isabelle.in.tum.de/

Programs written in languages like Java and Python can be run on differ-
ent architectures, like amd64 or arm64, because they have interpreters and
runtimes for them. In the same way, the Marlowe interpreter could be im-
plemented to run on other blockchains, like Ethereum, Solana for example.

We make the following assumptions on the underlying Blockchain that allow
Marlowe Semantics to serve as a common abstraction:

In order to define the different Tokens that are used as currency in the
participants accounts §2.1.3, deposits, and payments, we need to be able to
express a TokenName and CurrencySymbol.
type-synonym TokenName = ByteString
type-synonym CurrencySymbol = ByteString

To define a fixed participant in the contract §2.1.1 and to make payouts to
them, we need to express an Address.
type-synonym Address = ByteString

In the context of this specification, these string types are opaque, and we
don’t enforce a particular encoding or format.

The Timeouts that prevent us from waiting forever for external Inputs are
represented by the number of milliseconds from the Unix Epoch 3.
type-synonym POSIXTime = int

type-synonym Timeout = POSIXTime

The TimeInterval that defines the validity of a transaction is a tuple of
exclusive start and end time.
type-synonym TimeInterval = POSIXTime × POSIXTime

3January 1st, 1970 at 00:00:00 UTC

6

Chapter 2

Marlowe Core

2.1 Types
This section introduces the data types of Marlowe Core, which are composed
by the Marlowe DSL and also the types required to compute a Transaction.

Because of the literate programming nature of Isabelle §1.3, the types are
defined bottom-up. To follow just the DSL, a reader can start by looking at
a Contract definition §2.1.7.

2.1.1 Participants, roles and addresses
We should separate the notions of participant, role, and address in a Marlowe
contract. A participant (or Party) in the contract can be represented by
either a fixed Address or a Role.
type-synonym RoleName = ByteString

datatype Party =
Address Address

| Role RoleName

An address party is defined by a Blockhain specific Address §1.4 and it cannot
be traded (it is fixed for the lifetime of a contract).

A Role, on the other hand, allows the participation of the contract to be
dynamic. Any user that can prove to have permission to act as RoleName
is able to carry out the actions assigned §2.1.6, and redeem the payments
issued to that role. The roles could be implemented as tokens1 that can be

1In the Cardano implementation roles are represented by native tokens and they are

7

traded. By minting multiple tokens for a particular role, several people can
be given permission to act on behalf of that role simultaneously, this allows
for more complex use cases.

2.1.2 Multi-Asset token
Inspired by Cardano’s Multi-Asset tokens 2, Marlowe also supports to trans-
act with different assets. A Token consists of a CurrencySymbol that repre-
sents the monetary policy of the Token and a TokenName which allows to
have multiple tokens with the same monetary policy.
datatype Token = Token CurrencySymbol TokenName

The Marlowe semantics treats both types as opaque ByteString.

2.1.3 Accounts
The Marlowe model allows for a contract to store assets. All participants of
the contract implicitly own an account identified with an AccountId.
type-synonym AccountId = Party

All assets stored in the contract must be in an internal account for one of
the parties; this way, when the contract is closed, all remaining assets can
be redeemed by their respective owners. These accounts are local: they only
exist (and are accessible) within the contract.
type-synonym Accounts = ((AccountId × Token) × int) list

During its execution, the contract can invite parties to deposit assets into an
internal account through the construct “When [Deposit accountId party token
value] timeout continuation" . The contract can transfer assets internally
(between accounts) or externally (from an account to a party) by using the
term "Pay accountId payee token value continuation”, where Payee is:
datatype Payee = Account AccountId

| Party Party

A Pay always takes money from an internal AccountId, and the Payee defines
if we transfer internally (Account p) or externally (Party p)

distributed to addresses at the time a contract is deployed to the blockchain
2https://docs.cardano.org/native-tokens/learn

8

https://docs.cardano.org/native-tokens/learn

2.1.4 Choices
Choices – of integers – are identified by ChoiceId which is defined with a
canonical name and the Party who had made the choice:
type-synonym ChoiceName = ByteString
datatype ChoiceId = ChoiceId ChoiceName Party

Choices are Bounded. As an argument for the Choice action §2.1.6, we pass
a list of Bounds that limit the integer that we can choose. The Bound data
type is a tuple of integers that represents an inclusive lower and upper
bound.
type-synonym Bound = int × int

2.1.5 Values and Observations
We can store a Value in the Marlowe State §2.1.8 using the Let construct
§2.1.7, and we use a ValueId to referrence it
datatype ValueId = ValueId ByteString

Values and Observations are language terms that interact with most of the
other constructs. Value evaluates to an integer and Observation evaluates to
a boolean using evalValue §2.2.10 and evalObservation §2.2.11 respectively.

They are defined in a mutually recursive way as follows:
datatype Value = AvailableMoney AccountId Token

| Constant int
| NegValue Value
| AddValue Value Value
| SubValue Value Value
| MulValue Value Value
| DivValue Value Value
| ChoiceValue ChoiceId
| TimeIntervalStart
| TimeIntervalEnd
| UseValue ValueId
| Cond Observation Value Value

and Observation = AndObs Observation Observation
| OrObs Observation Observation
| NotObs Observation
| ChoseSomething ChoiceId
| ValueGE Value Value
| ValueGT Value Value

9

| ValueLT Value Value
| ValueLE Value Value
| ValueEQ Value Value
| TrueObs
| FalseObs

Three of the Value terms look up information in the Marlowe state: Avail-
ableMoney p t reports the amount of token t in the internal account of party
p; ChoiceValue i reports the most recent value chosen for choice i, or zero if
no such choice has been made; and UseValue i reports the most recent value
of the variable i, or zero if that variable has not yet been set to a value.

Constant v evaluates to the integer v, while NegValue x, AddValue x y, Sub-
Value x y, MulValue x y, and DivValue x y provide the common arithmetic
operations − x, x + y, x − y, x ∗ y, and x / y, where division always rounds
(truncates) its result towards zero.

Cond b x y represents a condition expression that evaluates to x if b is true
and to y otherwise.

The last Values, TimeIntervalStart and TimeIntervalEnd, evaluate respec-
tively to the start or end of the validity interval for the Marlowe transaction.

For the observations, the ChoseSomething i term reports whether a choice i
has been made thus far in the contract.

The terms TrueObs and FalseObs provide the logical constants true and false.
The logical operators ¬ x, x ∧ y, and x ∨ y are represented by the terms
NotObs x, AndObs x y, and OrObs x y, respectively.

Value comparisons x < y, x ≤ y, x > y, x ≥ y, and x = y are represented
by ValueLT x y, ValueLE x y, ValueGT x y, ValueGE x y, and ValueEQ x y.

2.1.6 Actions and inputs
Actions and Inputs are closely related. An Action can be added in a list of
Cases §2.1.7 as a way to declare the possible external Inputs a Party can
include in a Transaction at a certain time.

The different types of actions are:
datatype Action = Deposit AccountId Party Token Value

| Choice ChoiceId Bound list
| Notify Observation

10

A Deposit a p t v makes a deposit of #v Tokens t from Party p into account
a.

A choice Choice i bs is made for a particular choice identified by the ChoiceId
§2.1.4 i with a list of inclusive bounds bs on the values that are acceptable.
For example, [Bound 0 0 , Bound 3 5] offers the choice of one of 0, 3, 4 and
5.

A notification can be triggered by anyone as long as the Observation evaluates
to true. If multiple Notify are present in the Case list, the first one with a
true observation is matched.

For each Action, there is a corresponding Input that can be included inside
a Transaction
type-synonym ChosenNum = int

datatype Input = IDeposit AccountId Party Token int
| IChoice ChoiceId ChosenNum
| INotify

The differences between them are:

• Deposit uses a Value while IDeposit has the int it was evaluated to
with evalValue §2.2.10.

• Choice defines a list of valid Bounds while IChoice has the actual Cho-
senNum.

• Notify has an Observation while INotify does not have arguments, the
Observation must evaluate to true inside the Transaction

2.1.7 Contracts
Marlowe is a continuation-based language, this means that a Contract can
either be a Close or another construct that recursively has a Contract. Even-
tually, all contracts end up with a Close construct.

Case and Contract are defined in a mutually recursive way as follows:
datatype Case = Case Action Contract
and Contract = Close

| Pay AccountId Payee Token Value Contract
| If Observation Contract Contract

11

| When Case list Timeout Contract
| Let ValueId Value Contract
| Assert Observation Contract

Close is the simplest contract, when we evaluate it, the execution is completed
and we generate Payments §?? for the assets in the internal accounts to their
default owners 3.

The contract Pay a p t v c, generates a Payment from the internal account a
to a payee §2.1.3 p of #v Tokens and then continues to contract c. Warnings
will be generated if the value v is not positive, or if there is not enough in the
account to make the payment in full. In the latter case, a partial payment
(of the available amount) is made

The contract If obs x y allows branching. We continue to branch x if the
Observation obs evaluates to true, or to branch y otherwise.

When is the most complex constructor for contracts, with the form When cs
t c. The list cs contains zero or more pairs of Actions and Contract continu-
ations. When we do a computeTransaction §2.2.1, we follow the continuation
associated to the first Action that matches the Input. If no action is matched
it returns a ApplyAllNoMatchError. If a valid Transaction is computed with
a TimeInterval with a start time bigger than the Timeout t, the contingency
continuation c is evaluated. The explicit timeout mechanism is what allows
Marlowe to avoid waiting forever for external inputs.

A Let contract Let i v c allows a contract to record a value using an identifier
i. In this case, the expression v is evaluated, and the result is stored with
the name i. The contract then continues as c. As well as allowing us to
use abbreviations, this mechanism also means that we can capture and save
volatile values that might be changing with time, e.g. the current price of oil,
or the current time, at a particular point in the execution of the contract, to
be used later on in contract execution.

An assertion contract Assert b c does not have any effect on the state of
the contract, it immediately continues as c, but it issues a warning if the
observation b evaluates to false. It can be used to ensure that a property
holds in a given point of the contract, since static analysis will fail if any
execution causes a warning. The Assert term might be removed from future
on-chain versions of Marlowe.

3Even if the payments are generated one at a time (per account and per Token), the
cardano implementation generates a single transaction

12

2.1.8 State and Environment
The internal state of a Marlowe contract consists of the current balances in
each party’s account, a record of the most recent value of each type of choice,
a record of the most recent value of each variable, and the lower bound for the
current time that is used to refine time intervals and ensure TimeIntervalStart
never decreases. The data for accounts, choices, and bound values are stored
as association lists.
record State = accounts :: Accounts

choices :: (ChoiceId × ChosenNum) list
boundValues :: (ValueId × int) list
minTime :: POSIXTime

The execution environment of a Marlowe contract simply consists of the
(inclusive) time interval within which the transaction is occurring.
record Environment = timeInterval :: TimeInterval

— TODO: see if we want to add data types of Semantic here (Transaction, etc)
or if we want to move this types to Semantic

datatype IntervalError = InvalidInterval TimeInterval
| IntervalInPastError POSIXTime TimeInterval

datatype IntervalResult = IntervalTrimmed Environment State
| IntervalError IntervalError

2.2 Semantics
Marlowe’s behavior is defined via the operational semantics (or executable
semantics) of the Isabelle implementation of its computeTransaction func-
tion. That function calls several auxiliary functions to apply inputs and find
a quiescent state of the contract. These, in turn, call evaluators for Value
and Observation.

13

2.2.1 Compute Transaction
The entry point into Marlowe semantics is the function computeTransaction
that applies input to a prior state to transition to a posterior state, perhaps
reporting warnings or throwing an error, all in the context of an environment
for the transaction.

computeTransaction :: Transaction ⇒ State ⇒ Contract ⇒ TransactionOut-
put

FIXME: Print record: Transaction

datatype TransactionOutput =
TransactionOutput

TransactionOutputRecord
| TransactionError TransactionError

FIXME: Print record: TransactionOutputRecord

This function adjusts the time interval for the transaction using fixInter-
val and then applies all of the transaction inputs to the contract using ap-
plyAllInputs. It reports relevant warnings and throws relevant errors.

computeTransaction ::
Transaction_ext () -> State_ext () -> Contract -> TransactionOutput;

computeTransaction tx state contract =
let {

inps = inputs tx;
} in (case fixInterval (interval tx) state of {

IntervalTrimmed env fixSta ->
(case applyAllInputs env fixSta contract inps of {

ApplyAllSuccess reduced warnings payments newState cont
->

(if not reduced &&
(not (equal_Contract contract Close) ||

null (accounts state))
then TransactionError TEUselessTransaction
else TransactionOutput

(TransactionOutputRecord_ext warnings payments
newState

cont ()));
ApplyAllNoMatchError -> TransactionError TEApplyNoMatchError;
ApplyAllAmbiguousTimeIntervalError ->

14

TransactionError TEAmbiguousTimeIntervalError;
});

IntervalError errora -> TransactionError (TEIntervalError errora);
});

2.2.2 Fix Interval
The fixInterval functions combines the minimum-time constraint of State
with the time interval of Environment to yield a “trimmed” validity interval
and a minimum time for the new state that will result from applying the
transaction. It throws an error if the interval is nonsensical or in the past.

FIXME: print type synonym: IntervalResult

fixInterval :: (Int, Int) -> State_ext () -> IntervalResult;
fixInterval (low, high) state =

let {
curMinTime = minTime state;
newLow = max low curMinTime;
curInterval = (newLow, high);
env = Environment_ext curInterval ();
newState = minTime_update (\ _ -> newLow) state;

} in (if less_int high low then IntervalError (InvalidInterval (low,
high))

else (if less_int high curMinTime
then IntervalError (IntervalInPastError curMinTime (low,

high))
else IntervalTrimmed env newState));

2.2.3 Apply All Inputs
The applyAllInputs function iteratively progresses the contract and applies
the transaction inputs to the state, checking for errors along the way and con-
tinuing until all the inputs are consumed and the contract reaches a quiescent
state.

applyAllInputs ::
Environment_ext () -> State_ext () -> Contract -> [Input] -> ApplyAllResult;

applyAllInputs env state contract inputs =
applyAllLoop False env state contract inputs [] [];

15

applyAllLoop ::
Bool ->

Environment_ext () ->
State_ext () ->

Contract ->
[Input] -> [TransactionWarning] -> [Payment] -> ApplyAllResult;

applyAllLoop contractChanged env state contract inputs warnings payments
=

(case reduceContractUntilQuiescent env state contract of {
ContractQuiescent reduced reduceWarns pays curState cont ->

(case inputs of {
[] -> ApplyAllSuccess (contractChanged || reduced)

(warnings ++ convertReduceWarnings reduceWarns)
(payments ++ pays) curState cont;

input : rest ->
(case applyInput env curState input cont of {

Applied applyWarn newState conta ->
applyAllLoop True env newState conta rest

(warnings ++
convertReduceWarnings reduceWarns ++

convertApplyWarning applyWarn)
(payments ++ pays);

ApplyNoMatchError -> ApplyAllNoMatchError;
});

});
RRAmbiguousTimeIntervalError -> ApplyAllAmbiguousTimeIntervalError;

});

2.2.4 Reduce Contract Until Quiescent
The reduceContractUntilQuiescent executes as many non-input steps of the
contract as is possible. Marlowe semantics do not allow partial execution of
a series of non-input steps.

reduceContractUntilQuiescent ::
Environment_ext () -> State_ext () -> Contract -> ReduceResult;

reduceContractUntilQuiescent env state contract =
reductionLoop False env state contract [] [];

16

2.2.5 Reduction Loop
The reductionLoop function attempts to apply the next, non-input step to
the contract. It emits warnings along the way and it will through an error if
it encounters an ambiguous time interval.

reductionLoop ::
Bool ->

Environment_ext () ->
State_ext () -> Contract -> [ReduceWarning] -> [Payment] -> ReduceResult;

reductionLoop reduced env state contract warnings payments =
(case reduceContractStep env state contract of {

Reduced warning effect newState ncontract ->
let {

newWarnings =
(if equal_ReduceWarning warning ReduceNoWarning then warnings

else warning : warnings);
a = (case effect of {

ReduceNoPayment -> payments;
ReduceWithPayment payment -> payment : payments;

});
} in reductionLoop True env newState ncontract newWarnings a;

NotReduced ->
ContractQuiescent reduced (reverse warnings) (reverse payments)

state
contract;

AmbiguousTimeIntervalReductionError -> RRAmbiguousTimeIntervalError;
});

2.2.6 Reduce Contract Step
The reduceContractStep function handles the progression of the Contract
in the absence of inputs: it performs the relevant action (payments, state-
change, etc.), reports warnings, and throws errors if needed. It stops reducing
the contract at the point when the contract requires external input.
Note that this function should report an implicit payment of zero (due to
lack of funds) as a partial payment of zero, not as a non-positive payment.
An explicit payment of zero (due to the contract actually specifying a zero
payment) should be reported as a non-positive payment.

17

reduceContractStep ::
Environment_ext () -> State_ext () -> Contract -> ReduceStepResult;

reduceContractStep uu state Close =
(case refundOne (accounts state) of {

Nothing -> NotReduced;
Just ((party, (token, money)), newAccount) ->

let {
newState = accounts_update (\ _ -> newAccount) state;

} in Reduced ReduceNoWarning
(ReduceWithPayment (Payment party (Party party) token money))
newState Close;

});
reduceContractStep env state (Pay accId payee token val cont) =

let {
moneyToPay = evalValue env state val;

} in (if less_eq_int moneyToPay Zero_int
then let {

warning = ReduceNonPositivePay accId payee token moneyToPay;
} in Reduced warning ReduceNoPayment state cont

else let {
balance = moneyInAccount accId token (accounts state);
paidMoney = min balance moneyToPay;
newBalance = minus_int balance paidMoney;
newAccs =

updateMoneyInAccount accId token newBalance (accounts
state);

warning =
(if less_int paidMoney moneyToPay

then ReducePartialPay accId payee token paidMoney
moneyToPay

else ReduceNoWarning);
} in (case giveMoney accId payee token paidMoney newAccs

of {
(payment, finalAccs) ->

Reduced warning payment
(accounts_update (\ _ -> finalAccs) state) cont;

}));
reduceContractStep env state (If obs cont1 cont2) =

let {
a = (if evalObservation env state obs then cont1 else cont2);

} in Reduced ReduceNoWarning ReduceNoPayment state a;
reduceContractStep env state (When uv timeout cont) =

(case timeInterval env of {

18

(startTime, endTime) ->
(if less_int endTime timeout then NotReduced

else (if less_eq_int timeout startTime
then Reduced ReduceNoWarning ReduceNoPayment state cont
else AmbiguousTimeIntervalReductionError));

});
reduceContractStep env state (Let valId val cont) =

let {
evaluatedValue = evalValue env state val;
boundVals = boundValues state;
newState =

boundValues_update (\ _ -> insert valId evaluatedValue boundVals)
state;

warn = (case lookup valId boundVals of {
Nothing -> ReduceNoWarning;
Just oldVal -> ReduceShadowing valId oldVal evaluatedValue;

});
} in Reduced warn ReduceNoPayment newState cont;

reduceContractStep env state (Assert obs cont) =
let {

warning =
(if evalObservation env state obs then ReduceNoWarning

else ReduceAssertionFailed);
} in Reduced warning ReduceNoPayment state cont;

2.2.7 Apply Input
The applyInput function attempts to apply the next input to each Case in
the When, in sequence.

applyInput ::
Environment_ext () -> State_ext () -> Input -> Contract -> ApplyResult;

applyInput env state input (When cases t cont) =
applyCases env state input cases;

applyInput env state input Close = ApplyNoMatchError;
applyInput env state input (Pay v va vb vc vd) = ApplyNoMatchError;
applyInput env state input (If v va vb) = ApplyNoMatchError;
applyInput env state input (Let v va vb) = ApplyNoMatchError;
applyInput env state input (Assert v va) = ApplyNoMatchError;

19

2.2.8 Apply Cases
The applyCases function attempts to match an Input to an Action, compute
the new contract state, emit warnings, throw errors if needed, and determine
the appropriate continuation of the contract.

applyCases ::
Environment_ext () -> State_ext () -> Input -> [Case] -> ApplyResult;

applyCases env state (IDeposit accId1 party1 tok1 amount)
(Case (Deposit accId2 party2 tok2 val) cont : rest) =
(if equal_Party accId1 accId2 &&

equal_Party party1 party2 &&
equal_Token tok1 tok2 && equal_int amount (evalValue env state

val)
then let {

warning =
(if less_int Zero_int amount then ApplyNoWarning

else ApplyNonPositiveDeposit party1 accId2 tok2 amount);
newState =

accounts_update
(\ _ -> addMoneyToAccount accId1 tok1 amount (accounts

state))
state;

} in Applied warning newState cont
else applyCases env state (IDeposit accId1 party1 tok1 amount) rest);

applyCases env state (IChoice choId1 choice)
(Case (Choice choId2 bounds) cont : rest) =
(if equal_ChoiceId choId1 choId2 && inBounds choice bounds

then let {
newState =

choices_update (\ _ -> insert choId1 choice (choices state))
state;

} in Applied ApplyNoWarning newState cont
else applyCases env state (IChoice choId1 choice) rest);

applyCases env state INotify (Case (Notify obs) cont : rest) =
(if evalObservation env state obs then Applied ApplyNoWarning state

cont
else applyCases env state INotify rest);

applyCases env state (IDeposit accId1 party1 tok1 amount)
(Case (Choice vb vc) va : rest) =
applyCases env state (IDeposit accId1 party1 tok1 amount) rest;

applyCases env state (IDeposit accId1 party1 tok1 amount)
(Case (Notify vb) va : rest) =

20

applyCases env state (IDeposit accId1 party1 tok1 amount) rest;
applyCases env state (IChoice choId1 choice)

(Case (Deposit vb vc vd ve) va : rest) =
applyCases env state (IChoice choId1 choice) rest;

applyCases env state (IChoice choId1 choice) (Case (Notify vb) va : rest)
=

applyCases env state (IChoice choId1 choice) rest;
applyCases env state INotify (Case (Deposit vb vc vd ve) va : rest) =

applyCases env state INotify rest;
applyCases env state INotify (Case (Choice vb vc) va : rest) =

applyCases env state INotify rest;
applyCases env state acc [] = ApplyNoMatchError;

2.2.9 Utilities
The moneyInAccount, updateMoneyInAccount, and addMoneyToAccount func-
tions read, write, and increment the funds in a particular account of the State,
respectively. The giveMoney function transfer funds internally between ac-
counts. The refundOne function finds the first account with funds in it.

moneyInAccount :: Party -> Token -> [((Party, Token), Int)] -> Int;
moneyInAccount accId token accountsV =

findWithDefault Zero_int (accId, token) accountsV;

updateMoneyInAccount ::
Party -> Token -> Int -> [((Party, Token), Int)] -> [((Party, Token),

Int)];
updateMoneyInAccount accId token money accountsV =

(if less_eq_int money Zero_int then delete (accId, token) accountsV
else insert (accId, token) money accountsV);

addMoneyToAccount ::
Party -> Token -> Int -> [((Party, Token), Int)] -> [((Party, Token),

Int)];
addMoneyToAccount accId token money accountsV =

let {
balance = moneyInAccount accId token accountsV;
newBalance = plus_int balance money;

} in (if less_eq_int money Zero_int then accountsV
else updateMoneyInAccount accId token newBalance accountsV);

21

giveMoney ::
Party ->

Payee ->
Token ->

Int ->
[((Party, Token), Int)] -> (ReduceEffect, [((Party, Token),

Int)]);
giveMoney accountId payee token money accountsV =

let {
a = (case payee of {

Account accId -> addMoneyToAccount accId token money accountsV;
Party _ -> accountsV;

});
} in (ReduceWithPayment (Payment accountId payee token money), a);

refundOne ::
[((Party, Token), Int)] ->

Maybe ((Party, (Token, Int)), [((Party, Token), Int)]);
refundOne (((accId, tok), money) : rest) =

(if less_int Zero_int money then Just ((accId, (tok, money)), rest)
else refundOne rest);

refundOne [] = Nothing;

2.2.10 Evaluate Value
Given the Environment and the current State, the evalValue function evalu-
ates a Value into a number

evalValue :: Environment ⇒ State ⇒ Value ⇒ int

Available Money

For the AvailableMoney case, evalValue will give us the amount of Tokens
that a Party has in their internal account.

evalValue env state (AvailableMoney accId token) = findWithDefault 0 (accId,
token) (accounts state)

22

Constant

For the Constant case, evalValue will always evaluate to the same value

evalValue env state (Constant integer) = integer

Addition

For the AddValue case, evalValue will evaluate both sides and add them
together.

evalValue env state (AddValue lhs rhs) = evalValue env state lhs + evalValue
env state rhs

Addition is associative and commutative:

evalValue env sta (AddValue x (AddValue y z)) = evalValue env sta (AddValue
(AddValue x y) z)

evalValue env sta (AddValue x y) = evalValue env sta (AddValue y x)

Subtraction

For the SubValue case, evalValue will evaluate both sides and subtract the
second value from the first.

evalValue env state (SubValue lhs rhs) = evalValue env state lhs − evalValue
env state rhs

Negation

For every value x there is the complement NegValue x so that

evalValue env sta (AddValue x (NegValue x)) = 0

Multiplication

For the MulValue case, evalValue will evaluate both sides and multiply them.

evalValue env state (MulValue lhs rhs) = evalValue env state lhs ∗ evalValue
env state rhs

23

Division

Division is a special case because we only evaluate to natural numbers:

• If the denominator is 0, the result is also 0. Other languages uses NaN
or Infinity to represent this case

• The result will be rounded towards zero.

evalValue env state (DivValue lhs rhs) =
(let n = evalValue env state lhs;

d = evalValue env state rhs
in if d = 0 then 0 else n quot d)

TODO: lemmas around division? maybe extend the following to proof eval-
Value and not just div

c 6= 0 =⇒ c ∗ a div (c ∗ b) = a div b

c 6= 0 =⇒ |c ∗ a| div |c ∗ b| = |a| div |b|

COMMENT(BWB): I suggest that the lemmas be (i) exact multiples di-
vide with no remainder, (ii) the remainder equals the excess above an exact
multiple, and (iii) negation commutues with division.

Choice Value

For the ChoiceValue case, evalValue will look in its state if a Party has made
a choice for the ChoiceName. It will default to zero if it doesn’t find it.

evalValue env state (ChoiceValue choId) = findWithDefault 0 choId (choices
state)

Time Interval Start

All transactions are executed in the context of a valid time interval. For the
TimeIntervalStart case, evalValue will return the beginning of that interval.

evalValue env state TimeIntervalStart = fst (timeInterval env)

24

Time Interval End

All transactions are executed in the context of a valid time interval. For the
TimeIntervalEnd case, evalValue will return the end of that interval.

evalValue env state TimeIntervalEnd = snd (timeInterval env)

Use Value

For the TimeIntervalEnd case, evalValue will look in its state for a bound
ValueId. It will default to zero if it doesn’t find it.

evalValue env state (UseValue valId) = findWithDefault 0 valId (boundValues
state)

Conditional Value

For the Cond case, evalValue will first call evalObservation on the condition,
and it will evaluate the the true or false value depending on the result.

evalValue env state (Cond cond thn els) = (if evalObservation env state cond
then evalValue env state thn else evalValue env state els)

2.2.11 Evaluate Observation
Given the Environment and the current State, the evalObservation function
evaluates an Observation into a number

evalObservation :: Environment ⇒ State ⇒ Observation ⇒ bool

True and False

The logical constants true and false are trivially evaluated.

evalObservation env state TrueObs = True

evalObservation env state FalseObs = False

Not, And, Or

The standard logical operators ¬, ∧, and ∨ are evaluated in a straightforward
manner.

25

evalObservation env state (NotObs subObs) = (¬ evalObservation env state
subObs)

evalObservation env state (AndObs lhs rhs) = (evalObservation env state lhs
∧ evalObservation env state rhs)

evalObservation env state (OrObs lhs rhs) = (evalObservation env state lhs
∨ evalObservation env state rhs)

Comparison of Values

Five functions are provided for the comparison (equality and ordering of
integer values) have traditional evaluations: =,<, ≤, >, and ≥.

evalObservation env state (ValueEQ lhs rhs) = (evalValue env state lhs =
evalValue env state rhs)

evalObservation env state (ValueLT lhs rhs) = (evalValue env state lhs <
evalValue env state rhs)

evalObservation env state (ValueLE lhs rhs) = (evalValue env state lhs ≤
evalValue env state rhs)

evalObservation env state (ValueGT lhs rhs) = (evalValue env state rhs <
evalValue env state lhs)

evalObservation env state (ValueGE lhs rhs) = (evalValue env state rhs ≤
evalValue env state lhs)

Chose Something

The ChoseSometing i term evaluates to true if the a choice i was previously
made in the history of the contract.

evalObservation env state (ChoseSomething choId) = member choId (choices
state)

26

Chapter 3

Marlowe Guarantees

We can also use proof assistants to demonstrate that the Marlowe semantics
presents certain desirable properties, such as that money is preserved and
anything unspent is returned to users by the end of the execution of any
contract.

Auxillary Functions

Many of the proofs in this chapter rely on function playTrace and play-
TraceAux that execute a sequence of transactions using the Marlowe seman-
tics defined in computeTransaction. They also rely on starting from a valid
and positive contract state, validAndPositive-state and a function maxTime-
Contract that extracts the latest timeout from the contract.

playTrace :: int ⇒ Contract ⇒ Transaction list ⇒ TransactionOutput

playTraceAux :: TransactionOutputRecord ⇒ Transaction list ⇒ Transac-
tionOutput

validAndPositive-state :: State ⇒ bool

maxTimeContract :: Contract ⇒ int

3.1 Money Preservation
One of the dangers of using smart contracts is that a badly written one can
potentially lock its funds forever. By the end of the contract, all the money
paid to the contract must be distributed back, in some way, to a subset of
the participants of the contract. To ensure this is the case we proved two
properties: “Money Preservation” and “Contracts Always Close”.

27

Regarding money preservation, money is not created or destroyed by the
semantics. More specifically, the money that comes in plus the money in the
contract before the transaction must be equal to the money that comes out
plus the contract after the transaction, except in the case of an error.

moneyInTransactions tra = moneyInPlayTraceResult tra (playTrace sl con-
tract tra)

where moneyInTransactions and moneyInPlayTraceResult measure the funds
in the transactions applied to a contract versus the funds in the contract state
and the payments that it has made while executing.

3.2 Contracts Always Close
For every Marlowe Contract there is a time after which an empty transaction
can be issued that will close the contract and refund all the money in its
accounts.
FIXME: This theorem doesn’t actually prove the narrative. Are we missing
a theorem?

[[validAndPositive-state sta; accounts sta 6= [] ∨ cont 6= Close]] =⇒ ∃ inp.
isClosedAndEmpty (computeTransaction inp sta cont)

3.3 Positive Accounts
There are some values for State that are allowed by its type but make no
sense, especially in the case of Isabelle semantics where we use lists instead
of maps:

1. The lists represent maps, so they should have no repeated keys.

2. We want two maps that are equal to be represented the same, so we
force keys to be in ascending order.

3. We only want to record those accounts that contain a positive amount.

We call a value for State valid if the first two properties are true. And we
say it has positive accounts if the third property is true.

FIXME: Address the review comment "Is this a note for us or the explanation
to the user of what playTraceAux-preserves-validAndPositive-state proves?".

28

[[validAndPositive-state (txOutState txIn); playTraceAux txIn transList = Trans-
actionOutput txOut]] =⇒ validAndPositive-state (txOutState txOut)

3.4 Quiescent Result
A contract is quiescent if and only if the root construct is When, or if the
contract is Close and all accounts are empty. If an input State is valid and
accounts are positive, then the output will be quiescent, isQuiescent.

The following always produce quiescent contracts:

• reductionLoop §2.2.5

• reduceContractUntilQuiescent §2.2.4

• applyAllInputs §2.2.3

• computeTransaction §2.2.1

• playTrace §3

playTrace sl cont (h : t) = TransactionOutput traOut =⇒ isQuiescent (txOutContract
traOut) (txOutState traOut)

3.5 Reducing a Contract until Quiescence Is
Idempotent

Once a contract is quiescent, further reduction will not change the contract
or state, and it will not produce any payments or warnings.

reduceContractUntilQuiescent env state contract = ContractQuiescent re-
ducedAfter wa pa nsta ncont =⇒ reduceContractUntilQuiescent env nsta
ncont = ContractQuiescent False [] [] nsta ncont

3.6 Split Transactions Into Single Input Does
Not Affect the Result

Applying a list of inputs to a contract produces the same result as applying
each input singly.

playTraceAux acc tral = playTraceAux acc (traceListToSingleInput tral)

29

3.6.1 Termination Proof
Isabelle automatically proves termination for most function. However, this is
not the case for reductionLoop, but it is manually proved that the reduction
loop monotonically reduces the size of the contract (except for Close, which
reduces the number of accounts), this is sufficient to prove termination.
reduceContractStep env sta c = Reduced twa tef nsta nc =⇒ evalBound nsta
nc < evalBound sta c

3.6.2 All Contracts Have a Maximum Time
If one sends an empty transaction with time equal to maxTimeContract, then
the contract will close.

validAndPositive-state sta
minTime sta ≤ iniTime maxTimeContract cont ≤ iniTime

iniTime ≤ endTime accounts sta 6= [] ∨ cont 6= Close
isClosedAndEmpty (computeTransaction (|interval = (iniTime, endTime), inputs = []|) sta cont)

3.6.3 Contract Does Not Hold Funds After it Closes
Funds are not held in a contract after it closes.

computeTransaction tra sta Close = TransactionOutput trec =⇒ txOutWarn-
ings trec = []

3.6.4 Transaction Bound
There is a maximum number of transaction that can be accepted by a con-
tract.

playTrace sl c l = TransactionOutput txOut =⇒ |l| ≤ maxTransactionsIni-
tialState c

30

	Marlowe
	Introduction
	The Marlowe Model
	Data types
	Quiescent
	Participants, accounts and state
	Core and Extended

	Specification generation and nomenclature
	Blockchain agnostic

	Marlowe Core
	Types
	Participants, roles and addresses
	Multi-Asset token
	Accounts
	Choices
	Values and Observations
	Actions and inputs
	Contracts
	State and Environment

	Semantics
	Compute Transaction
	Fix Interval
	Apply All Inputs
	Reduce Contract Until Quiescent
	Reduction Loop
	Reduce Contract Step
	Apply Input
	Apply Cases
	Utilities
	Evaluate Value
	Evaluate Observation

	Marlowe Guarantees
	Money Preservation
	Contracts Always Close
	Positive Accounts
	Quiescent Result
	Reducing a Contract until Quiescence Is Idempotent
	Split Transactions Into Single Input Does Not Affect the Result
	Termination Proof
	All Contracts Have a Maximum Time
	Contract Does Not Hold Funds After it Closes
	Transaction Bound

