Skip to content

Latest commit

 

History

History
executable file
·
44 lines (28 loc) · 1.36 KB

README.md

File metadata and controls

executable file
·
44 lines (28 loc) · 1.36 KB

Hello-Generative-Model

Day1. Introduction to (Classic) Generative Model

0) Pytorch Tutorial - HelloPytorch

1) Linear Regression

2) Logistic Regression

3) Gaussian Discriminant Analysis

4) GMM(Gaussian Mixture Model) with EM algorithm

Day2. Introduction to Varitional Inference / Probabilistic Neural Network

1) Variational Coin Toss - related blog

2) MNIST classification with Probabilistic (Layer) Neural Network

Day3. Introduction to Varitional Auto-Encoder(VAE)

1) AutoEncoder

2) Varitional AutoEncoder - code

3) CVAE

Day4. Introduction to Generative Adversarial Networks(GAN)

1) GAN

2) DCGAN

Day5. Improved GAN

1) infoGAN

2) WGAN

Checkout Other Generative Model Collections Here

Day6. Application of Deep Generative Model

1) CVAE

2) AAE

3) CycleGAN Original code

Day7. Other Important Deep Generative Model

1) PixelCNN original code

2) Mixture Density Network original code