-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathS_Dbw.py
111 lines (91 loc) · 4.14 KB
/
S_Dbw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import numpy as np
class S_Dbw():
def __init__(self,data,data_cluster,cluster_centroids_):
"""
data --> raw data
data_cluster --> The category that represents each piece of data(the number of category should begin 0)
cluster_centroids_ --> the center_id of each cluster's center
"""
self.data = data
self.data_cluster = data_cluster
self.cluster_centroids_ = cluster_centroids_
# cluster_centroids_ 是一个 array, 给出类数k
self.k = cluster_centroids_.shape[0]
self.stdev = 0 # stdev 的初始化
# 对每个类别标记进行循环,如:0,1,2,...
# 该循环计算的是下面公式里根号里的内容:
for i in range(self.k):
# 计算某类别下所有样本各自的全部特征值的方差:
#(vector,shape为样本的个数,相当于下面公式里的 signma)
std_matrix_i = np.std(data[self.data_cluster == i],axis=0)
# 求和
self.stdev += np.sqrt(np.dot(std_matrix_i.T,std_matrix_i))
self.stdev = np.sqrt(self.stdev)/self.k # 取平均
def density(self,density_list=[]):
"""
compute the density of one or two cluster(depend on density_list)
变量 density_list 将作为此函数的内部列表,其取值范围是0,1,2,... ,元素个数是聚类类别数目
"""
density = 0
if len(density_list) == 2: # 当考虑两个聚类类别时候,给出中心点位置
center_v = (self.cluster_centroids_[density_list[0]] +self.cluster_centroids_[density_list[1]])/2
else: # 当只考虑某一个聚类类别的时候,给出中心点位置
center_v = self.cluster_centroids_[density_list[0]]
for i in density_list:
temp = self.data[self.data_cluster == i]
for j in temp: # np.linalg.norm 是求范数(order=2)
if np.linalg.norm(j - center_v) <= self.stdev:
density += 1
return density
def Dens_bw(self):
density_list = []
result = 0
# 下面的变量 density_list 列表将会算出每个对应单类的密度值。
for i in range(self.k):
density_list.append(self.density(density_list=[i])) # i 是循环类别标签
# 开始循环排列
for i in range(self.k):
for j in range(self.k):
if i==j:
continue
result += self.density([i,j])/max(density_list[i],density_list[j])
return result/(self.k*(self.k-1))
def Scat(self):
# 分母部分:
sigma_s = np.std(self.data,axis=0)
sigma_s_2norm = np.sqrt(np.dot(sigma_s.T,sigma_s))
# 分子部分:
sum_sigma_2norm = 0
for i in range(self.k):
matrix_data_i = self.data[self.data_cluster == i]
sigma_i = np.std(matrix_data_i,axis=0)
sum_sigma_2norm += np.sqrt(np.dot(sigma_i.T,sigma_i))
return sum_sigma_2norm/(sigma_s_2norm*self.k)
def S_Dbw_result(self):
"""
compute the final result
"""
return self.Dens_bw()+self.Scat()
#just for tests
#data = np.array([[1,2,1],[0,1,4],[3,3,3],[2,2,2]])
#data_cluster = np.array([1,0,1,2]) # The category represents each piece of data belongs
#centers_id = np.array([1,0,3]) # the cluster's num is 3
#a = S_Dbw(data,data_cluster,centers_id)
#print(a.S_Dbw_result())
# 例子
import S_Dbw as sdbw
from sklearn.cluster import KMeans
from sklearn.datasets.samples_generator import make_blobs
from sklearn.metrics.pairwise import pairwise_distances_argmin
#import matplotlib.pyplot as plt
np.random.seed(0)
batch_size = 45
centers = [[1, 1], [-1, -1], [1, -1]]
n_clusters = len(centers)
X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7)
k_means = KMeans(init='k-means++', n_clusters=3, n_init=10)
k_means.fit(X)
k_means_cluster_centers = k_means.cluster_centers_
k_means_labels = pairwise_distances_argmin(X, k_means_cluster_centers)
KS = sdbw.S_Dbw(X, k_means_labels, k_means_cluster_centers)
print(KS.S_Dbw_result())