forked from facebookresearch/sam2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_sam2.py
87 lines (65 loc) · 2.97 KB
/
run_sam2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
import numpy as np
import os
import os.path as osp
import pdb
import cv2
from sam2.build_sam import build_sam2_video_predictor
from tqdm import tqdm
checkpoint = "./checkpoints/sam2.1_hiera_large.pt"
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
data_path = "../../data"
out_path = "../../output/sam2.1"
vis_path = "../../vis/sam2.1_mask"
modal='color'
vis = True
predictor = build_sam2_video_predictor(model_cfg, checkpoint)
os.makedirs(vis_path, exist_ok=True)
seqs = sorted(os.listdir(data_path))
for seq in (seqs):
print(seq)
# if os.path.exists(f'{out_path}/{seq}/Prediction.txt'):
# continue
height, width = cv2.imread(f'{data_path}/{seq}/{modal}/00000001.png').shape[:2]
if vis:
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(osp.join(vis_path,f'{seq}_{modal}.mp4'), fourcc, 20, (width, height))
os.makedirs(f'{out_path}/{seq}', exist_ok=True)
x, y, w, h = np.loadtxt(f'{data_path}/{seq}/groundtruth.txt', delimiter=',').tolist()
first_box = [x, y, x+w, y+h]
results = [[x, y, w, h]]
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.float16):
state = predictor.init_state(osp.join(data_path, seq, modal), offload_video_to_cpu=True, offload_state_to_cpu=True)
frame_idx, object_ids, masks = predictor.add_new_points_or_box(state, box=first_box, frame_idx=0, obj_id=1)
for frame_idx, object_ids, masks in predictor.propagate_in_video(state):
mask = masks[0, 0].cpu().numpy()
mask = mask > 0.0
non_zero_indices = np.argwhere(mask)
if len(non_zero_indices) == 0:
bbox = [0, 0, 0, 0]
else:
y_min, x_min = non_zero_indices.min(axis=0).tolist()
y_max, x_max = non_zero_indices.max(axis=0).tolist()
bbox = [x_min, y_min, x_max-x_min, y_max-y_min]
if frame_idx != 0:
results.append(bbox)
if vis:
img = cv2.imread(f'{data_path}/{seq}/{modal}/{frame_idx+1:08d}.png')
# Convert the binary mask to 3 channels
mask_img = np.zeros_like(img)
mask_img[mask] = [0, 255, 0] # Green color for the mask
# Optionally, blend the original image with the mask
alpha = 0.5 # Transparency factor
blended = cv2.addWeighted(img, 1 - alpha, mask_img, alpha, 0)
# Draw the bounding box on the blended image
cv2.rectangle(blended, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (0, 255, 0), 2)
# Save the resulting frame
out.write(blended)
if vis:
out.release()
with open(f'{out_path}/{seq}/Prediction.txt', 'w') as f:
for result in results:
f.write(','.join([str(int(i)) for i in result]) + '\n')
predictor.reset_state(state)
torch.clear_autocast_cache()
torch.cuda.empty_cache()