-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
171 lines (133 loc) · 6.57 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import sys
import glob
import json
import os
import time
from metrics import rouge, bleu, f1
def rounder(num):
return round(num, 2)
def bleu_max_over_ground_truths(prediction, ground_truths):
scores_for_ground_truths = []
for ground_truth in ground_truths:
score = cal_bleu([prediction], [ground_truth])
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)
def rouge_max_over_ground_truths(prediction, ground_truths):
scores_for_rouge1 = []
scores_for_rouge2 = []
scores_for_rougel = []
for ground_truth in ground_truths:
score = cal_rouge([prediction], [ground_truth])
scores_for_rouge1.append(score[0])
scores_for_rouge2.append(score[1])
scores_for_rougel.append(score[2])
return max(scores_for_rouge1), max(scores_for_rouge2), max(scores_for_rougel)
def cal_bleu(infer, ref):
while True:
try:
bleu_score = bleu.moses_multi_bleu(infer, ref)
return bleu_score
except FileNotFoundError:
print("Failed to test bleu_score. Sleeping for %i secs...", 0.01)
time.sleep(3)
def cal_rouge(infer, ref):
x = rouge.rouge(infer, ref)
return x['rouge_1/f_score'] * 100, x['rouge_2/f_score'] * 100, x['rouge_l/f_score'] * 100
def evaluate(infer, ref, inferred_spans, ref_spans):
bl = cal_bleu(infer, ref)
x = rouge.rouge(infer, ref)
f, e, total = f1.evaluate(inferred_spans, ref_spans)
return bl, x['rouge_1/f_score'] * 100, x['rouge_2/f_score'] * 100, x['rouge_l/f_score'] * 100, f, e, total
def evaluate_multi_ref(inferred_response, inferred_spans, example_id):
ref_spans = []
ref_responses = []
print("load multi reference data")
with open("data/modified_multi_reference_test.json", 'r', encoding='utf-8') as r:
multi_reference_test = json.load(r)
assert len(multi_reference_test) == len(example_id), "the length of multi_ref example should be same as pre"
for i in example_id:
ref_spans.append(multi_reference_test[i]["spans"])
ref_responses.append(multi_reference_test[i]["responses"])
print("calculate f1 metric")
# calculate f1 metric
f, e, total_span = f1.evaluate(inferred_spans, ref_spans)
# calculate bleu and rouge
print("multi_f1:", f)
print("multi_em:", e)
print("span total:", total_span)
print("calculate bleu and rouge")
bleu = rouge_1 = rouge_2 = rouge_l = total = 0
assert len(inferred_response) == len(ref_responses), "the length of predicted span and ground_truths span should be same"
for i, pre in enumerate(inferred_response):
print("calculating %d " % (i+1))
bleu += bleu_max_over_ground_truths(pre, ref_responses[i])
rouge_result = rouge_max_over_ground_truths(pre, ref_responses[i])
rouge_1 += rouge_result[0]
rouge_2 += rouge_result[1]
rouge_l += rouge_result[2]
total += 1
bleu = bleu / total
rouge_1 = rouge_1 / total
rouge_2 = rouge_2 / total
rouge_l = rouge_l / total
return bleu, rouge_1, rouge_2, rouge_l, f, e, total_span
def main(model_path, log_root, decode_dir, mode, multi_label_eval=False):
# statr evaluation
with open(os.path.join(decode_dir, "output.json"), 'r', encoding='utf-8') as r:
output = json.load(r)
example_index = list(output.keys())
ref_response = []
inferred_response = []
ref_spans = []
inferred_spans = []
gen_ref_num = 0
for i in example_index:
ref_response.append(output[i]["ref_response"])
inferred_response.append(output[i]["inferred_response"])
ref_spans.append([output[i]["ref_span"]])
inferred_spans.append(output[i]["inferred_spans"])
num_ref = False
num_gen = False
for item in output[i]["output_index"]:
if isinstance(item, list):
num_ref = True
elif isinstance(item, int):
num_gen = True
if num_ref and num_gen:
gen_ref_num = gen_ref_num+1
assert len(inferred_response) == len(ref_response), "the length of infer_response and ref_responses should be same "
print("start single reference evaluation")
result = evaluate(inferred_response, ref_response, inferred_spans, ref_spans)
try:
with open(os.path.join(log_root, str(mode)+"_result.json"), 'r', encoding='utf-8') as r:
result_log = json.load(r)
except FileNotFoundError:
with open(os.path.join(log_root, str(mode)+"_result.json"), 'w', encoding='utf-8') as w:
result_log = {}
json.dump(result_log, w)
result_log[model_path] = {"bleu": rounder(float(result[0])), "rouge_1": rounder(float(result[1])), "rouge_2": rounder(float(result[2])), "rouge_l": rounder(float(result[3])), "f1": rounder(float(result[4])), "exact_match": rounder(float(result[5])), "span_num": result[6],"gen_ref_num":gen_ref_num}
with open(os.path.join(log_root, str(mode)+"_result.json"), 'w', encoding='utf-8') as w:
json.dump(result_log, w)
print("finish single reference evaluation")
if mode == "test" and multi_label_eval:
print("start multi reference evaluation for test")
multi_ref_result_log = {}
multi_ref_result = evaluate_multi_ref(inferred_response, inferred_spans, example_index)
multi_ref_result_log[model_path] = {"multi_ref_bleu": rounder(float(multi_ref_result[0])), "multi_ref_rouge_1": rounder(float(multi_ref_result[1])), "multi_ref_rouge_2": rounder(float(multi_ref_result[2])),
"multi_ref_rouge_l": rounder(float(multi_ref_result[3])), "multi_ref_f1": rounder(float(multi_ref_result[4])), "multi_ref_exact_match": rounder(float(multi_ref_result[5])),
"span_num": multi_ref_result[6],"gen_ref_num": gen_ref_num}
with open(os.path.join(log_root, str(mode)+"_multi_result.json"), 'w', encoding='utf-8') as w:
json.dump(multi_ref_result_log, w)
print("all evaluation is finished")
if __name__ == '__main__':
mode = "test"
train_dir = "log/Camera_Ready_2_RefNet/train/"
model_dir = "log/Camera_Ready_2_RefNet/train/model.ckpt-10775"
main(model_dir, "log/Camera_Ready_2_RefNet", "log/Camera_Ready_2_RefNet/55_Test_Infer_ckpt-10775", mode, True)
r = open(os.path.join(train_dir, "finished_"+mode+"_models.json"), 'r', encoding='utf-8')
finished_option_models = json.load(r)
r.close()
finished_option_models["finished_"+mode+"_models"].append(model_dir)
w = open(os.path.join(train_dir, "finished_"+mode+"_models.json"), 'w', encoding='utf-8')
json.dump(finished_option_models, w)
w.close()