-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathreduced_gradient.py
120 lines (89 loc) · 3.5 KB
/
reduced_gradient.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# Generalized Reduced Gradient Algorithm
import numpy as np
import matplotlib.pyplot as plt
from sympy import *
def generalized_reduced_gradient():
x1, x2, x3 = symbols('x1 x2 x3')
xvars = [x1, x2, x3]
fx = 4 * x1 - x2 ** 2 + x3 ** 2 - 12 # Function to be minimized
hxs = [20 - x1 ** 2 - x2 ** 2, x1 + x3 - 7] # Constraints to be obeyed
alpha_0 = 1 # Parameter initializations
gamma = 0.4
max_iter = 100
max_outer_iter = 50
eps_1, eps_2, eps_3 = 0.001, 0.001, 0.001
xcurr = np.array([2, 4, 5]) # Starting solution
dfx = np.array([diff(fx, xvar) for xvar in xvars])
dhxs = np.array([[diff(hx, xvar) for xvar in xvars] for hx in hxs])
nonbasic_vars = len(xvars) - len(hxs)
opt_sols = []
for outer_iter in range(max_outer_iter):
print '\n\nOuter loop iteration: {0}, optimal solution: {1}'.format(outer_iter + 1, xcurr)
opt_sols.append(fx.subs(zip(xvars, xcurr)))
# Step 1
delta_f = np.array([df.subs(zip(xvars, xcurr)) for df in dfx])
delta_h = np.array([[dh.subs(zip(xvars, xcurr)) for dh in dhx] for dhx in dhxs]) # Value of h'_i(xcurr) for all i
J = np.array([dhx[nonbasic_vars:] for dhx in delta_h]) # Computation of J and C matrices
C = np.array([dhx[:nonbasic_vars] for dhx in delta_h])
delta_f_bar = delta_f[nonbasic_vars:]
delta_f_cap = delta_f[:nonbasic_vars]
J_inv = np.linalg.inv(np.array(J, dtype=float))
delta_f_tilde = delta_f_cap - delta_f_bar.dot(J_inv.dot(C))
# Step 2
if abs(delta_f_tilde[0]) <= eps_1:
break
d_bar = - delta_f_tilde.T # Direction of search in current iteration
d_cap = - J_inv.dot(C.dot(d_bar))
d = np.concatenate((d_bar, d_cap)).T
# Step 3
alpha = alpha_0
while alpha > 0.001:
print '\nAlpha value: {0}\n'.format(alpha)
# Step 3(a)
v = xcurr.T + alpha * d
v_bar = v[:nonbasic_vars]
v_cap = v[nonbasic_vars:]
flag = False
for iter in range(max_iter):
print 'Iteration: {0}, optimal solution obtained at x = {1}'.format(iter + 1, v)
h = np.array([hx.subs(zip(xvars, v)) for hx in hxs])
if all([abs(h_i) < eps_2 for h_i in h]): # Check if candidate satisfies all constraints
if fx.subs(zip(xvars, xcurr)) <= fx.subs(zip(xvars, v)):
alpha = alpha * gamma
break
else:
xcurr = v # Obtained a candidate better than the current optimal solution
flag = True
break
# Step 3(b)
delta_h_v = np.array([[dh.subs(zip(xvars, v)) for dh in dhx] for dhx in dhxs])
J_inv_v = np.linalg.inv(np.array([dhx[nonbasic_vars:] for dhx in delta_h_v], dtype=float))
v_next_cap = v_cap - J_inv_v.dot(h)
# Step 3(c)
if abs(np.linalg.norm(np.array(v_cap - v_next_cap, dtype=float), 1)) > eps_3:
v_cap = v_next_cap
v = np.concatenate((v_bar, v_cap))
else:
v_cap = v_next_cap
v = np.concatenate((v_bar, v_cap))
h = np.array([hx.subs(zip(xvars, v)) for hx in hxs])
if all([abs(h_i) < eps_2 for h_i in h]):
# Step 3(d)
if fx.subs(zip(xvars, xcurr)) <= fx.subs(zip(xvars, v)):
alpha = alpha * gamma # Search for lower values of alpha
break
else:
xcurr = v
flag = True
break
else:
alpha = alpha * gamma
break
if flag == True:
break
print '\n\nFinal solution obtained is: {0}'.format(xcurr)
print 'Value of the function at this point: {0}\n'.format(fx.subs(zip(xvars, xcurr)))
plt.plot(opt_sols, 'ro') # Plot the solutions obtained after every iteration
plt.show()
if __name__ == '__main__':
generalized_reduced_gradient()