There are n
oranges in the kitchen and you decided to eat some of these oranges every day as follows:
- Eat one orange.
- If the number of remaining oranges
n
is divisible by2
then you can eatn / 2
oranges. - If the number of remaining oranges
n
is divisible by3
then you can eat2 * (n / 3)
oranges.
You can only choose one of the actions per day.
Given the integer n
, return the minimum number of days to eat n
oranges.
Example 1:
Input: n = 10 Output: 4 Explanation: You have 10 oranges. Day 1: Eat 1 orange, 10 - 1 = 9. Day 2: Eat 6 oranges, 9 - 2*(9/3) = 9 - 6 = 3. (Since 9 is divisible by 3) Day 3: Eat 2 oranges, 3 - 2*(3/3) = 3 - 2 = 1. Day 4: Eat the last orange 1 - 1 = 0. You need at least 4 days to eat the 10 oranges.
Example 2:
Input: n = 6 Output: 3 Explanation: You have 6 oranges. Day 1: Eat 3 oranges, 6 - 6/2 = 6 - 3 = 3. (Since 6 is divisible by 2). Day 2: Eat 2 oranges, 3 - 2*(3/3) = 3 - 2 = 1. (Since 3 is divisible by 3) Day 3: Eat the last orange 1 - 1 = 0. You need at least 3 days to eat the 6 oranges.
Constraints:
1 <= n <= 2 * 109